The Mysterious Missing Third

“Even if I knew that tomorrow the world would go to pieces, I would still plant my apple tree.” — Martin Luther

Texas A&M astronomer Nick Suntzeff (left) visits with 1940 Texas A&M distinguished petroleum engineering graduate and donor George P. Mitchell '40 at the 2010 dedication of the Stephen W. Hawking Auditorium within Mitchell's namesake George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy.

Texas A&M astronomer Nick Suntzeff (left) visits with 1940 Texas A&M distinguished petroleum engineering graduate and donor George P. Mitchell ’40 at the 2010 dedication of the Stephen W. Hawking Auditorium within Mitchell’s namesake George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy.

Nick Suntzeff and I don’t see each other nearly as often as I would like. But every once in a blue if not super moon, we get a chance to catch up the new-fashioned, 21st century way: via email.

The threads admittedly are few and far between these busy days, but what they lack in frequency, they more than make up for in substance, from word count to subjects covered.

Truth be told, Nick is one of the main reasons I started this blog. I realized shortly after I met him when he came to Texas A&M in 2006 that he’s a natural storyteller — and that he saves some of his best stuff for his written correspondence. No way should such greatness be relegated to my inbox if I can help it! (Incidentally, I can’t be alone in thinking he should write a book. Heck, I bet I can come up with at least one volume myself during the past decade. And that doesn’t even take into account his Facebook profile posts.)

You see, “talking” to/with Nick is like happy hour with one of your best friends — one who has an uncanny way of seeing right through your soul and speaking directly to your heart. It’s both a comfort and a disarming ease I absolutely treasure, mostly because I know it’s genuine and that it comes with great care and at great cost. It’s no secret that those who feel so intensely as to be so in tune with their surroundings do so at considerable personal risk. But Nick’s vulnerability is just another of his many endearing qualities, and I dare say it’s served him as well in professional circles as it has in his personal relationships.

Speaking of personal, here’s a story rather close to home and heart that Nick has graciously given me permission to share. No better time in my book -– figurative and maybe even that literal one I hope he writes — than the Thanksgiving season.

For a bit of context, we were discussing an idea I’d had for a possible new marketing campaign tentatively titled “I Am Texas A&M Science” and centered on science starts -– how our faculty, students and staff got into science, from choice of major to first jobs, and why they choose to stay. Lighthearted. Informal. Identifiable. Human. Fun.

Naturally, Nick took it from there and ran with it. The result is more than I could have hoped for as both a communicator and a human being. Inspiring on levels that transcend science and even the best marketing taglines. Read/see for yourself.

* ~ * ~ * ~ * ~ *

My first job — and a science job — was staining Pap smears in a pathology lab. I was only 16. It was a cool job, and I also got to help out in the real path lab, because my boss was also coroner for the county of Marin.

There is another part to the story, though. When I went to Stanford, it was expected I would pay one-third, my parents would pay one-third, and I had a state scholarship for the final one-third. Not much money really back then, but my parents were not wealthy. It got a lot worse when my father became ill and then paralyzed from a World War II injury and could not work. So the last two years, I would not have the one-third my parents could pay. I worked all summer and on many weekends for my one-third, but if I were to make up the missing third, I would have to hash or something.

But then I got a letter from Stanford stating that I was awarded a scholarship, and I did not have to pay the missing one-third and part of my share. So it all worked out. I never applied for a scholarship, so it was all mysterious.

It turns out the person I worked for when I was 16 was a physician and friend of my father’s. When he heard of my situation, he donated money to Stanford for my scholarship but required it to be anonymous. I learned the story much later when my father told me. But it was too late to thank Dr. John Manwaring.

What a wonderful gesture — one I will never forget. My father said Dr. Manwaring was proud that I went into science, and he wanted to help me.

cheers, nick

* ~ * ~ * ~ * ~ *

As I read it for the first time on an October Friday night, It brought tears to my eyes. As I format it tonight for this blog, it still does.

“It was a very important part of my life, and a life-learning event when I discovered what my father’s friend had done.” — Nick Suntzeff

Lack of scientific proof aside, I firmly believe the universe has its own way of showing us sometimes that we’re in exactly the right place at the right time doing the right thing for the right reasons. This is one of those times.

I also believe it’s never too late to say thank you. I humbly add my own here on the record for Dr. Manwaring and the many generous, forward-thinking visionaries out there like him. Talk about leading by example and enabling us to realize an immeasurable return on your investment in the process.

Happy Thanksgiving, indeed.

blog_quote

Improving STEM Education: It’s About Time

The following is a guest post from Robert Wilson ’89, a former 3rd grade science teacher at Bryan Independent School District’s Blue Ribbon-recognized Johnson Elementary School. Wilson, a Ph.D. candidate in education curriculum and instruction at Texas A&M and longtime science educator, currently is Director of STEM Classroom Products for Galxyz’s Blue Apprentice, a new app that is putting the interactive adventure into elementary science and making international headlines, including for a recent partnership with Popular Science to create an entire line of game-based K6 science resources.

Although Wilson may no longer be head of the class at Johnson, his heart clearly remains with his students and singularly invested in their best interests, particularly with regard to the S in STEM.

(Credit: SAHMReviews.com)

(Credit: SAHMReviews.com)

* ~ * ~ * ~ * ~ *

Sometimes we put too much faith in a system without understanding all that is involved. I support our teachers and administrators and respect the job that they do for our children every day. However, the legislative constraints in which they work are having a negative impact on our students’ STEM (science, technology, engineering and mathematics) education. If we are to improve STEM education as a nation, we have to take a long hard look at what is happening within classrooms at the elementary level concerning the amount of time that teachers are teaching science, along with topic selection.

Do you have a child in elementary school? How much science instructional time are they receiving?

planets

Food for thought follows, with accompanying citations:

Blank, R. K. (2013). Science instructional time is declining in elementary schools: What are the implications for student achievement and closing the gap? Science Education, 97(6), 830-847.

“The recommendations for improvement of science education from the NRC indicate that the elementary years are an important time to capture students’ interest and motivation for science study and that time for science instruction is critical (NRC, 2007, 2012). A review of some 150 studies of children’s attitudes toward science found that interest in science for some children tends to decline from age 11 onward (Osborne, 2003), and thus elementary grades instruction in science provides a key time for building interest.”

“The current federal requirement of annual reporting on adequate yearly progress in mathematics and reading for all students produces a strong incentive for schools to focus more instructional time on mathematics and reading, which can result in less class time for science, social studies, and other subjects.”

Sandholtz, J. H., & Ringstaff, C. (2014). Inspiring instructional change in elementary school science: The relationship between enhanced self-efficacy and teacher practices. Journal of Science Teacher Education, 25(6), 729-751.

“In contrast to daily instruction in mathematics and reading/language arts, only 20 percent of classes in kindergarten through grade 3 (K-3) receive science instruction on most days, and many classes receive science instruction only a few days a week or during some weeks of the year (Banilower et al., 2013). In the past decade, the amount of instructional time spent on science has declined rather than increased. In 2000, K-3 teachers in the U.S. spent an average of 23 min a day teaching science (Weiss et al., 2001), but in 2012, K-3 teachers spent an average of 19 min on science instruction (Banilower et al., 2013).”

Ness, D., Farenga, S. J., Shah, V., & Garofalo, S. G. (2016). Repositioning science reform efforts: Four practical recommendations from the field. Improving Schools, 1365480216650312.

“Combined, prior science education reform efforts have failed to recognize the impact from the environmental press on learning. More recently, the constraints with which teachers have grappled are increased pressure – resulting, in part, from time constraints for assessments — and an overwhelming focus on mathematics and literacy at the elementary levels (Farenga et al., 2010; Johnson et al., 2008; Ravitch, 2013). As a result of high-stakes testing, too little time is allocated toward the instruction and assessment of the science curriculum. Teachers spend more time on mathematics and reading at the elementary level to fulfill requirements on these exams. As a result, science learning, knowledge, and motivation suffer (Anderson, 2012, p. 119). Suggestions to improve and increase content should be proposed by individuals who have spent a considerable amount of time working or teaching in K to 12 classrooms — a task that might provide a better understanding of the environmental constraints that are found in the K to 12 setting.”

This might give you a little more perspective on why I left the science classroom to work for Galxyz, Inc. Technology is rapidly changing how we educate our children. Blue Apprentice is a fun way to learn science and increases the amount of time students spend focused on STEM — time the students are not receiving in the classroom.

sower_harvest

Curiouser and Curiouser

“Every person passing through this life will unknowingly leave something and take something away. Most of this ‘something’ cannot be seen or heard or numbered or scientifically detected or counted. It’s what we leave in the minds of other people and what they leave in ours. Memory. The census doesn’t count it. Nothing counts without it.” — Robert Fulghum, “All I Really Need to Know I Learned in Kindergarten”

Robert Fulghum is right: Some of the most important things in life, you learn in Kindergarten. Or in my case, from one of my children’s Kindergarten teachers, longtime South Knoll Elementary School’s Sandy Felderhoff, whose email signature for as long as I’ve known her reads as follows:

“Children may not remember what you say, but they will remember how you make them feel.”

Like Sandy, I’m one who firmly believes in the power of words and feelings, not to mention of retaining and nourishing one’s inner child as a major key to staying hopeful, humble and curious. It’s one of the big reasons I feel such a kinship with teachers and also here in the Texas A&M College of Science, where curiosity is an unspoken job requirement. I believe in it so strongly, it’s our primary marketing tagline: Be Curious.

PassionatelyCurious

Several months ago, Texas A&M astronomer Nick Suntzeff and I were discussing the concept as an aside to the press release we were working on to promote a Brazos Valley Museum of Natural Science photography exhibit featuring two glass plates on loan from Carnegie Observatories that were taken by world-renowned astronomer Edwin Hubble. I told Nick that, in addition to the press release, I envisioned a blog on the value of curiosity, perhaps as a sequel of sorts to one I’d written a couple years back involving 1986 Nobel Prize in Chemistry recipient Dudley Herschbach. Here was Nick’s reaction:

“Sure! Dudley is amazing and one of those scientists who has never lost his interest in everything, including seeing humor in scientists’ curiosity. I wish he were here [at Texas A&M] more, because he is one of the most interesting and enjoyable scientists I have met. The Nobel Prize did not destroy his inner child — perhaps it amplified it!”

Einstein_Curiosity

As is often the case with Nick and I via email, the conversation continued to the point that I realized I had enough material for at least two blogs — this one and another I thought best reserved for National Teacher Appreciation Week to showcase the value of those gifted with the powerful ability to inspire long after the final exam.

I believe in Nick’s case, it takes one to know one. As usual, he explains it best below using both example and anecdote, helping me circle back precisely to where we began — memory and associated emotion, one of the most effective forms of lifelong learning simply because it so often effortlessly enhances and even eclipses the original subject at hand.

* ~ * ~ * ~ * ~ *

Dudley and I share something in common beyond an appreciation for curiosity. We were both undergraduate math majors at Stanford, separated by about 15 years. He even had one of my math professors. And he is really one of my heroes now.

Although I did not know him until I came to Texas A&M, he was always the ideal I had in mind of what a professor should be. In that sense, he was like my thesis advisor Bob Kraft, who passed away last year, or another mentor I had — Bob Williams, who was director first at Cerro Tololo Inter-American Observatory (CTIO) and then the Space Telescope Science Institute (STScI). They all had different personalities, but each of them shared a lot in common outside of science — humor, culture, empathy and personal discipline.

Bob Kraft was special. At one point, we were observing and began to chat about music. He had studied classical guitar and loved all sorts of music (except Russian classical music of the 19th century. Go figure). I had taken classes in music as an undergrad in which we read scores of symphonies and such and, from the perspective of a conductor, got to see the rich parallel structure of music and the history behind it. I also had a Russian family that took me to the opera (which I still really do not like) and the symphony (which I do). Kraft knew a lot more than I did, but he was intrigued that a grad student would know stuff like this. So he asked me if there were others who were interested and could read conductors’ scores. A number of grad students could — most grad students in astronomy played some sort of musical instrument. So we got together a group of about six of us, and every two weeks for a semester, we would meet at his house. His wife would cook a great meal; we would get a lecture on wine (on which he was an incredible expert); and then we would go to his living room, where he had a great stereo system, and listen to (1) a Mozart piano concerto, (2) a Sibelius symphony and (3) a Beethoven string quartet. He would dissect the music: “Here is the second theme, but coming in in the bass in a minor chord. . .” I was enraptured. I did not like string quartets, and I still don’t, but the study of the music was fascinating. He managed to get one credit for the “class,” and he gave us a second class a year later.

Now, imagine I would do the same today — invite students over, have wine, talk about music. It would be great, but I am sure there could be Title IX problems and legal issues about drinking, etc., and definitely no credits. But to me, that was what the academy was — an almost spontaneous explosion of learning by someone who was a master.

cheers, nick

Timely Finds

I found a stash of old CDs yesterday — mostly time capsules from past work lives and far more creative days, given that they predated the birth of my three children and social media, among other milestones and competing distractions. There in a folder on one was this forgotten little ditty, inconspicuously labeled as “Essay_Final.doc” and date-stamped March 5, 2004:

* ~ * ~ * ~ * ~ *

Brotherly Love

As a communicator for three Texas A&M University colleges, I’ve had the opportunity to interview hundreds of former students for gift-related publicity purposes. It’s a process that never gets old.

When I made the telephone call last spring to set up a photo shoot with Blue Bell Creameries’ Edward and Howard Kruse, I knew I was in for a special treat — and not just the free ice cream sample kind.

We arrived in Brenham on a cold, blustery morning, blown in by winter’s last gasp raging through a countryside already wrapped in a gloriously beautiful (if not warm) coat of bluebonnets. As we stepped into the House that Blue Bell Built, I immediately felt at home, from the building’s hardwood floors to its cheerful receptionist, who directed us to the main conference room for the shoot.

As we discussed placements and camera angles, a tall well-dressed man entered the room only seconds behind his smile. “Ed Kruse,” he said, taking my hand and noting the Aggie ring. “My brother, Howard, will be down soon. He’s tied up on the phone, and besides, he’s always late.”

While we waited, Ed gave us an overview of the company — a conversation that soon shifted to Texas A&M and the brothers’ student days. As Ed talked, we imagined what it must have been like to hitchhike to attend a university then only 10,000 students strong — all male and all proud members of the Corps of Cadets. And although Ed recalled that he and Howard had their share of fun, he assured us they both knew why they were there: to get their educations.

It’s a philosophy they’ve continued to live by. Both brothers firmly believe education is the solution to most problems. As strong advocates of Texas A&M’s undergraduate studies programs, they have funded endowments to benefit both students and faculty. Just as valuably, they give of their time, speaking to groups and volunteering as leaders for Texas A&M’s One Spirit One Vision Campaign.

In true president/chief executive officer fashion, Howard’s arrival marked the end of story time and a return to the business at hand. I thanked Ed for including us in his reverie, then helped the photographer position the brothers for their 15 minutes of fame.

As we did so, the photographer told them it would help if he could refer to them by heights — to which Ed replied, “Yeah, Howard’s used to me being the big brother. He followed me everywhere, even to A&M.”

It was the closest Howard came to an unforced smile the entire shoot.

After packing up our equipment, we headed to the gift shop for our samples. I don’t know if it was the novelty wooden spoons or the events I had just witnessed that made me think back to the simpler days of my own childhood when there was nothing I enjoyed more than the taste of ice cream — unless it was razzing one of my own siblings.

I guess some treats in life are universal after all.

* ~ * ~ * ~ * ~ *

For those who are visual learners, here’s a partial scan of the resulting ad that ran in the Summer 2003 issue of Lifescapes magazine:

KrusesAd_AgProgram

My kids can attest to the fact that I’m a sucker for a good jingle. One that used to run on local radio stations proudly and melodiously proclaimed that “Blue Bell tastes just like the good old days.” Nice to experience an unexpectedly refreshing taste of mine and the reminder that I was a fan of first-person prose long before launching this blog.

Oh, and last but definitely not least, RIP, Ed Kruse. I’m certain Heaven’s a much sweeter place with you in residence.

Expanding Y[our] Horizons

Texas A&M Center for Mathematics and Science Education (CSME) researcher Dr. Craig Wilson has made a career out of science education, outreach and inquiry, inspiring countless school children across this state and nation to learn more about math and science and the many related possibilities through hands-on projects and presentations.

This past Saturday, he made his third consecutive appearance at Expanding Your Horizons, an all-day, workshop-structured conference for 6th grade girls intended to open new doors of interest and opportunity while also encouraging them to stay actively involved in math and science. Beyond making them aware of STEM (science, technology, engineering and mathematics) career opportunities, the annual event also provides the girls with a chance to meet female role models in related fields.

For his part, Craig says he learns as much as he teaches — typical, given the astute observer and encourager that he is. As the ultimate lifelong learner, he has agreed to share his educational observations via the Texas A&M Science blog in hopes of inspiring a broader audience if not horizon.

* ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ *

Texas A&M Center for Mathematics and Science Education (CMSE) research scientist Craig Wilson makes science simple for his "Expanding Your Horizons" audience by outlining his proven two-step method: observe and ask questions. (Credit: Chris Jarvis.)

Texas A&M Center for Mathematics and Science Education (CMSE) research scientist Craig Wilson makes science simple for his Expanding Your Horizons audience by outlining his proven two-step method: observe and ask questions. (Credit: Chris Jarvis.)

Expanding Your Horizons . . . better known by its acronym “EYH.” You might imagine an expansive horizon, the sun sinking in the west with a myriad of colors filling the sky before darkness descends. A lone rider is riding away into that sunset in silhouette. Who is the rider? From our infatuation with Westerns, one assumes it is a cowboy. But why not a cowgirl? Perhaps it is she who has just saved The West? Why not?

EYH is designed to change that mindset from both without and within. The “Your” refers to 6th grade girls. The “Horizons” is not girls seeing a sunset but seeing science as a possible career. The “Expanding” is encouraging and helping them to look up, to look out and to look above and beyond. Just as the Orion spacecraft is looking to one day take humans to Mars, to break the shackles of low-Earth orbit where we have been trapped since 1972, so it is that EYH wants to help girls to go in science where too few girls have gone before.

In addition to being a man of many travels, Wilson boasts as rich a collection of stories as he does related props, including this preserved sample of elephant dung -- a souvenir from time spent in Africa. (Credit: Chris Jarvis.)

In addition to being a man of many travels, Wilson boasts as rich a collection of stories as he does related props, including this preserved sample of elephant dung — a souvenir from time spent in Africa. (Credit: Chris Jarvis.)

According to the Census Bureau’s 2009 American Community Survey, women comprise 48 percent of the U.S. workforce but just 24 percent of workers in STEM (science, technology, engineering and mathematics) fields. Why is that? These girls know nothing of this, although their parents might. There are various theories, but that is unimportant on this particular Saturday. The question to be asked is, “Why have these young girls come today?” I did not ask, but I suspect that it may be because of parental interest, for each has to come with a chaperone. They have to be brought to the College of Science on the Texas A&M University campus, and 153 have made it today. This is good, because this means that their parents see this as important. They are giving their girls options. They are helping to expand their daughters’ horizons.

Today, what do the girls look like? They look interested. They look interesting. They look like potential scientists. I start my first session. They do not sit back and spectate. They participate. This is good, because this is half the battle. The other half is for them to ask questions. This is difficult, because this is not easy for girls or boys. It used to be second nature. It came naturally when they were younger. It is in the nature of scientists to inquire, to observe and to then ask questions about what they have seen. That is the way science is done, and I try to model that and have the girls see that science is much more than book learning. It is about active engagement. It can be fun. But they have to see that it is important and that they can do it as well as if not better than anyone else.

Wilson explained that peanuts are a standard astronaut snack in space because they are compact and provide lots of energy. EYH participants learned how to calculate a peanut's calorific value by setting fire to it, heating a paper cup of water in the process. (Credit: Chris Jarvis.)

Wilson explained that peanuts are a standard astronaut snack in space because they are compact and provide lots of energy. EYH participants learned how to calculate a peanut’s calorific value by setting fire to it, heating a paper cup of water in the process. (Credit: Chris Jarvis.)

I run three sessions. At the end of each, I am encouraged. These girls have what it takes. They have the right stuff to become scientists. Sadly, not enough girls or boys see it that way. We are not getting enough students to pursue science in college. The STEM fields need them. The world needs them.

The world needs answers. She is beset by problems. We need problem solvers to step up and help her. Why not these girls? They have stepped up today. They have given up a Saturday for science. Today, they have expanded their minds. They have seen that they are not alone. Each has taken a small step for a girl but a giant leap towards a scientific horizon that they may have thought was beyond their reach.

This Texas A&M College of Science program is a small step in the right direction. It tells each girl, “You can EYH.” Yours and ours.

Learning

Down-Home Research

One of the things I enjoy most about video production is that it gets me out of the office. Don’t get me wrong, working in the luxury of air conditioning can be really nice in the summer, but anyone can go a little stir-crazy if they spend every single day at a desk. But every now and then, my job takes me places, and during production of our most recent Labors of Lab segment, it took me back home.

Laura Schwab, a senior biology major at Texas A&M who studies aquatic insects, is the star of our latest installment. As I was beginning the storyboarding process for her episode, Laura’s faculty advisor, Dr. David Baumgardner, invited me to film her and a few other students as they trapped insects at the Navasota River. Well, it just so happens I’m originally from Navasota, so this would be a homecoming of sorts for me. Sign me up!

Users are responsible for securing permission from the copyright holder for publication of any images. Contact communications@science.tamu.edu.

22130552952_dc93cdd920_o

Now, let’s be clear: The Navasota River isn’t what you would call a “pretty” river. It’s muddy, and there’s usually no shortage of algae. But it is buzzing with wildlife, especially the aquatic insects the students were so hoping to capture. And even though I grew up in that area, I’d never actually been near, or in, the Navasota River. This was a shoot I was truly looking forward to, even on a Saturday.

IMG_8574

Laura turned out to be an excellent choice for a Labors of Lab spot, and it was quickly apparent that she was Dr. Baumgardner’s right-hand person. Upon our arrival, they immediately divided up the students and waded into the river, where they embarked on separate excursions. While Dr. Baumgardner led two of the students off to catch insects in the river’s current, Laura and two other students went searching for snag, the random sticks and natural debris that protrude from calm parts of the river that often serve as nesting grounds for many water bugs.

B-roll.Still001Schwab LOL3.Still001

It was here that Laura’s natural leadership shined. She carefully chose which area of the river they would scour for snag, all while explaining to her team the reasons for her selection and demonstrating the proper way to collect a specimen. Whenever they found a particularly mossy stick that looked like it might be serve as a decent home for insects, they carefully doused the end of it in an alcohol solution and secured it in a Ziploc bag.

B-roll.Still002 B-roll.Still004

It was fascinating to watch. In the videos I produce, I often only film people talking about their research and, usually, I’ll stage scenes of people pretending to work on their research so it appears as if they’re actually doing something fascinating in the final video. Never have I actually had the chance to film genuine research in progress — until now. The scenes I filmed at the river that day were some of my best, in my opinion. Undergraduate students doing real research, having real fun. You can’t fake that.
IMG_8590_edited

Plus, there’s no place like home.

Oh, and speaking of that spot, watch Laura in action and hear her thoughts on doing field work for Dr. Baumgardner’s lab in our latest Labors of Lab episode below:

Turning the Tide

Anyone who knows Tim Scott ’89 or has heard him present to general audiences (particularly current or prospective students as associate dean for undergraduate programs in the Texas A&M College of Science) knows that one of his go-to points of inspirational reference is the starfish story, a classic tale by Loren Eiseley about motivation, intrinsic reward and end results.

As many times as I’ve heard him tell the story, I don’t recall ever hearing nor even pondering the starfish’s perspective. Until earlier this month, when Scott forwarded the following email from a former student, Alvin Lira ’13, a 2014 Texas A&M bioenvironmental sciences graduate and current Legislative Support Specialist with the Texas A&M University System Office of Federal Relations in Washington, D.C.

Lira has agreed to share his words via the Texas A&M Science blog in hopes of inspiring other students who may find themselves in his 2012 shoes, not to mention possible benefit from knowing there is light at the end of what at present might appear to be a mighty dark tunnel — and that there are caring people like Tim Scott who are more than happy to help them visualize it even when they might not be able to see it for themselves.

* ~ * ~ * ~ * ~ *

AlvinLira_LinkedInHello, Dr. Scott,

Not too long ago, I was a biology student at Texas A&M. In 2012 I met you under very unfortunate circumstances due to the academic troubles I had encountered during my first few semesters at TAMU. I was struggling in most of my classes due to a variety of personal issues, and I was at risk of being placed under academic probation. You asked me to meet with you, and I remember thinking about transferring to a different university and changing my course of study before our meeting. While I was in your office, you dissuaded me from this decision and asked me to find a major I would enjoy at TAMU. You told me you would do everything you could to help me get into the department I had chosen in order to finish my studies. You mentioned how many first-generation students from the Rio Grande Valley, like myself, struggle early on and eventually leave TAMU, and you did not want to see someone else miss out on the education that A&M can provide. Soon after, you came through on your end of the deal, and you helped me get into the bioenvironmental sciences degree program.

It was the first time at TAMU that someone had taken the time to truly help and guide me through my struggles. Coming from my background to TAMU, I never really had someone to aid me in any education-related issue. Having someone who put time and effort to help me succeed completely changed my mindset. After speaking with you and seeing how helpful you were, I felt more comfortable reaching out to others for advice and guidance. Within two years after our conversation, I had changed my major to bioenvironmental sciences, learned how to study and find resources, began mentoring at-risk students, got three internships in a row (one of those in D.C. working on Agriculture & Natural Resources Policy), and graduated from Texas A&M (I ended my last three semesters above a 3.25 GPA and my last two semesters above a 3.5 GPA)! After graduating, I went on to work for a state agency for a few months, and I am now in D.C. working for the Texas A&M System’s Office of Federal Relations.

I cannot tell you how much those 20 minutes with you influenced me. You definitely played a huge role in my decision to stay at Texas A&M, and the opportunities that were given to me at TAMU resulted from my decision to stay. I may have not graduated with the highest GPA in my class as a result of my early struggles, but I took advantage of every opportunity given to me afterward, and I did very well in bioenvironmental sciences. I wrote so much, but I simply and truly just wanted to say thank you. I hope that you encourage other first-generation students to pursue their dreams and to never give up. Sometimes it just takes one person to believe in you to change things around. I hope you are doing well and continuing to impact student’s lives. Take care.

Sincerely,
Alvin Lira

* ~ * ~ * ~ * ~ *

Of course, anyone who knows Tim Scott also knows he’s as gracious and geunine as he is generous. He conservatively estimates he answers at least 100 emails from students each day, and his response below to Alvin (spoiler alert: it includes a starfish reference) speaks volumes about a lot more than undergraduate education or potential career advice.

* ~ * ~ * ~ * ~ *

Scott_TAlvin,

What a tremendous gift you have given me today! I am blessed beyond measure. One of my favorite stories is the man walking on the beach throwing washed-up starfish back in the ocean (http://www.esc16.net/users/0020/FACES/Starfish%20Story.pdf). I feel like that is my calling in life. Thank goodness I had the good sense to reach out to you to help you understand your full potential. As we discussed, you went on, graduated and are accomplishing the dream. Your job now is to pay it forward, and it sounds like you are doing just that. Also know how much you brought to the table. You were open, accepting, trusting and worked hard. With those attributes, you can do anything you want to do. Thank you for your note today and for not giving up. I am in DC from time to time related to grants, and maybe we can connect when I am there.

Warm Regards,
Tim Scott

* ~ * ~ * ~ * ~ *

There are perhaps few greater potentially valuable efforts than making and taking the time — Tim Scott back then to help yet another individual in need, and Alvin Lira present-day to prove that investment (Scott’s and his) paid off. As does saying thank you. I bet the starfish would agree.

WilliamJames_01

I Am Just a Teacher

The following is a guest post from Patricia Oliver ’11, a 10th grade chemistry and 9th grade Advancement Via Individual Determination (AVID) teacher at West Mesquite High School in Mesquite, Texas. A 2011 graduate of Texas A&M University and a member of the aggieTEACH Program, Oliver earned both her bachelor’s of science degree in university studies (2011) and a master’s of education degree in education curriculum and instruction (2012) at Texas A&M. Earlier this month, she was honored with the 2015 Texas Instruments Foundation Innovation in STEM Teaching Award — a prestigious honor that includes a $5,000 personal award as well as $5,000 for Oliver to spend on her classroom.

Patricia Oliver '11 (right), accumulating extra classroom experience as a Texas A&M undergraduate and aggieTEACH participant. The program, a collaboration between the College of Science and the College of Education and Human Development, has helped Texas A&M lead the State of Texas in number of university-certified math and science teachers produced each year for nearly a decade. (Credit: Robb Kendrick/Texas A&M Foundation.)

Patricia Oliver ’11 (right), accumulating extra classroom experience as a Texas A&M undergraduate and aggieTEACH participant. The program, a collaboration between the College of Science and the College of Education and Human Development, has helped Texas A&M lead the State of Texas in number of university-certified math and science teachers produced each year for nearly a decade. (Credit: Robb Kendrick/Texas A&M Foundation.)

* ~ * ~ * ~ * ~ *

I am a just teacher. Every year, there comes a point when I contemplate that statement. When people ask me what I do, I automatically answer, “I am a teacher.” And to any non-teacher, that translates to: I talk to students, I grade papers and then I go home. Anyone can do that.

There are many examples of this that all teachers can relate to. One that springs to mind is when a man I was talking to said, “Oh! So you just went to college to get your Mrs. degree?” after hearing I was a teacher. Or it’s commonly assumed that I teach elementary. People are generally shocked when I tell them I teach high school chemistry, often responding with, “Wow! You must be smart, then!” Does that mean if I taught anything else, I am not smart?

The title of “teacher” doesn’t scream intelligence to non-teachers. It is sad that society views the teaching profession in that way. It makes every teacher feel inferior. People’s views of my profession make me second-guess myself all the time. I never think I’m working hard enough. Doing enough. Providing enough. It’s stupid, isn’t it?

This year, I was awarded the STEM innovation teaching award. I had students come hug me and tell me that I was the reason they walked across the stage. But even in those moments of validation, I think I’m not deserving. I feel guilty that I’m being praised for a job well done, because I don’t think I did anything amazing. It’s just my job. I am just a teacher.

2011 Texas A&M University graduate and West Mesquite High School science teacher Patricia Oliver '11 with her 2015 Texas Instruments Foundation Innovation in STEM Teaching Award. (Credit: Leah Felty.)

2011 Texas A&M University graduate and West Mesquite High School science teacher Patricia Oliver ’11 with her 2015 Texas Instruments Foundation Innovation in STEM Teaching Award. (Credit: Leah Felty.)

Today, while sitting at lunch at a conference with 2,000 other teachers during my vacation time, I received a text from a former student who recently graduated:

“Ms. Oliver, I would like to thank you for everything you have done for me! You’ve always been there when I had a problem or I needed somebody to talk to. You’ve impacted my life for the best, and I can’t thank you enough for everything! You’ve looked out for me and guided me in the right path. I love you so much, and I know you might hear this from a lot of students, but I honestly mean it. You’re like a mother, sister, best friend and mentor to me. I honestly don’t know where I would be without your guidance. I’m honestly going to miss you so much, but I’ll still, hopefully, go to feed the homeless. Thank you, Ms. Oliver, for everything! I love you from the bottom of my heart! You were and forever will be my favorite teacher.”

The message was sent completely out the blue. I immediately started to cry. When I asked why she sent the text, she responded, “I was just thinking about my high school years and, well, you were in most of it.” My first thought was, “That’s ridiculous! I didn’t pay enough attention to you! I couldn’t possibly mean that much to you.” I am just a teacher.

Then I realized something … never once did she talk about all the chemistry she learned! She didn’t mention all the papers I graded or how the immediate feedback I gave her was so influential! Funny, isn’t it?

Patricia Oliver, showing off her hopefully contagious love for chemistry in her West Mesquite High School classroom. (Credit: Patricia Oliver.)

Patricia Oliver, showing off her hopefully contagious love for chemistry in her West Mesquite High School classroom. (Credit: Patricia Oliver.)

I am more than just a teacher. Like my student said, I am a “mother, sister, best friend and mentor.” I am a counselor, sounding board, advice-giver, mediator and thought-provoker. I change lives.

I am so much more than a teacher, and I am proud.

I could go on forever. But I’ll leave you with my favorite quote:

“I’ve learned that people will forget what you said, people will forget what you did, but people will never forget how you made them feel.” — Maya Angelou

Time is Relative

Forrest Gump said it best: “Life is like a box of chocolates.” I feel the same way about interviews. In both situations, you never know what you’re going to get. Sometimes, it’s a mild-flavored, otherwise-forgettable center. Occasionally, it’s crunchy-nutty goodness or maybe coconut or nougat. And in other instances, it’s a mysterious, vaguely citrusy mess that you can’t spit into your napkin fast enough to save what’s left of your taste buds.

Every so often, however, it’s a total surprise — a good one, at that. A week ago, I found such a nugget in the middle of Texas A&M physics Ph.D. candidate Ting Li’s responses to my #Take5 for Texas A&M Student Research Week questions. Here’s her line that gave me pause:

“Every week during our group meeting, we each present our work from the past week and our plans for next week and get feedback from our advisors. …”

A weekly group meeting where each member in a 15-plus group presents? Uh, to borrow a popular social-media-driven phrase, ain’t nobody got time for that, and yet, clearly, a place as busy as the Munnerlyn Astronomical Instrumentation Laboratory does. I had to know more.

Yeah, this is pretty much how I feel about meetings. Judging from the fact that their source, buyolympia.com, is now experiencing 2-to-3-week shipping delays due to the popular demand, I'd say I'm not alone. (Credit: Will Bryant, buyolympia.com)

Yeah, this is pretty much how I feel about meetings. Judging from the fact that their source, buyolympia.com, is now experiencing 2-to-3-week shipping delays due to the popular demand, I’d say I’m not alone. (Credit: Will Bryant, buyolympia.com)

As luck would have it, Texas A&M astronomer and Munnerlyn Lab Director Darren DePoy happened by my office the next day. I seized my opportunity, motioning him in and expecting him to dismiss Ting’s altruistic yet surely erroneous statement. Except that he didn’t; he confirmed it. I fired back with a series of questions, the first one challenging him to explain exactly how — as in, how much time does it take each week to get through that many people’s to-do lists? (Keep in mind I do their PR, and although that means I know what amounts to probably less than the half of it, I do know that simply ticking off the names of each project/collaboration alone — with or without acronyms, partners involved and funding sources — would take a considerable time investment for one person.)

His answer? Roughly an hour. Oh, and it’s typically a set time each week — Wednesdays at 4 p.m.

His secret? Each person gets three slides and only 4-to-5 minutes to speak. (Move over, Robert; there’s a new rules of order sheriff in town, and his badge happens to be the world’s largest, whether spectrograph or digital camera.) Oh, and there’s nothing left to chance with regard to those three slides, either. Each must address a specific topic: What I did last week (Slide 1); What I think I’m going to do this week (Slide 2); and Problems/Questions I need to discuss (Slide 3). DePoy tells me they have an online archive of everyone’s slides dating back to the astronomical instrumentation group’s founding in 2008. (Muahahahahahaha!)

“It’s a good exercise for all of us, even [Texas A&M astronomer and Munnerlyn Lab manager] Jennifer [Marshall] and me, but it’s really good for the undergraduates in our lab,” DePoy says. “They learn how to present, how to structure their thoughts and communicate verbally, and how to defend their ideas among peers.”

On second thought, maybe there is time for that. And here, I thought their themed t-shirts for every project were impressive. …

Former Physics and Astronomy research associate and Munnerlyn Lab member Jean-Philippe Rheault, modeling a VIRUS spectrograph as well as one of the group's many custom-made t-shirts indicative of the lab's close-knit ties and infectious sense of camaraderie.

Former Texas A&M Physics and Astronomy research associate and Munnerlyn Lab member Jean-Philippe Rheault, modeling a VIRUS spectrograph as well as one of the group’s many custom-made t-shirts indicative of the lab’s close-knit ties and infectious sense of camaraderie.

And the Beat Goes On

One of my favorite questions beyond “Why Texas A&M?” for the many faculty, researchers and students I encounter in the course of this job is, “Why science?”

Texas A&M biologist Deborah Bell-Pedersen recently scratched the surface of this topic for the latest issue of Spirit magazine. She then agreed to take it one step further and more personal for our blog, delving into the earliest motivations behind her 30-plus-year career in higher education and fundamental research in circadian and fungal biology.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus's genes, which led to major insights into its biological clock.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus’s genes, which led to major insights into its biological clock.

* ~ * ~ * ~ * ~ *

My path to becoming a research scientist was not a straightforward one. Although science and math were always my favorite classes as a student, I wanted to work to save the animals on our planet through conservation efforts and to find ways to limit our negative impact on our environment.

I grew up in a small town in upstate New York that few people have ever heard of. In this small community, I could easily see how our growing population and lack of concern for building in new areas was negatively affecting local wildlife populations. So in my first two years of college, I majored in wildlife conservation.

It wasn’t long before I became concerned that I was not really learning what I thought I needed to in order to achieve my goal. I figured to really have an influence on conservation efforts, I would need a solid understanding of the biology and ecology of the organisms I so deeply wanted to protect. That’s when I began studying biology.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them  that drew her into biology as a possible career.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them that drew her into biology as a possible career.

In my junior year, a friend who was working in a research lab would tell me all about the experiments he was doing to uncover the mechanisms for how cells divide. This caught my attention because I assumed that scientists already knew nearly everything about cell division. While our textbooks made it seem like all of the problems had been solved, we really didn’t know much about what controls cell division. That’s when I decided to try my hand at research, and during my senior year I carried out a research project in cell biology. I found it incredibly exciting to be designing my own experiments to get answers to problems that no one had ever previously studied. On top of the thrill of basic discovery, the research also had important implications in animal and human health.

I was hooked and continued my journey toward a career in research and teaching. Along the way, I have found joy from continuing to make basic discoveries in biology, some of which now appear in textbooks and have potential for the development of new approaches to treat cancer.

As a career, I would say there is nothing better. The research we are doing will have a major impact on society; I learn something new every day; I interact with fascinating people from all different cultures; I travel all over the world to speak about our work at meetings; but probably the most rewarding aspect is my role in training students to be our next generation of research scientists, many of whom will make important new discoveries themselves.

Neurospora crassa samples growing in Bell-Pedersen's Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Neurospora crassa samples growing in Bell-Pedersen’s Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Research scientists do work long hours, but for me, doing experiments and analyzing data is fun and more like a favorite hobby than actually working. Despite these long hours, I still find time to maintain my childhood interest in animals and pretty much have my own zoo — one rescued dog, one cat, two miniature donkeys and one horse. I take riding lessons twice a week on my horse, Tea and Crumpets, to learn dressage.

In addition, I have also always enjoyed music. People are always surprised when they come to my office and hear anything from opera to hip-hop blaring from my speakers. I do play the piano a little and in recent years, I have started learning to play the violin.

In many ways, I think playing music is a lot like conducting research. Both are a lot of fun, require creativity and concentration, and have the potential for long-lasting impact on society.

* ~ * ~ * ~ * ~ *

Yeah, Bell-Pedersen is onto something here, and go figure that there’s actual science behind it, too. Watch it, then get to work and/or go play!