Science Comes Full Circle in Chile

It’s for good reason people look forward to Fridays. In addition to marking the official end of the work week (sometimes mercifully), they represent a last opportunity of sorts to close the deal.

I found myself at just that point in both respects last Friday, when I was hard at work, prepping a draft of a lengthy feature story that actually turned into two stories summarizing the Texas A&M Astronomy Group’s role in one of the biggest discoveries in astrophysics history — the first neutron star collision observed in both sound and light. This one had legs for days and as such was both a writer’s dream and nightmare in one fell swoop.

Ever since I’d found out about it in late August, I had cautioned myself and my experts that we and any media we hoped to target would be best served by concentrating on an angle unique to us. Boy, did we have that in spades, considering Texas A&M astronomer Jennifer Marshall happened to be the only astronomer present at Cerro Tololo Inter-American Observatory in Chile observing at the 4-meter Victor M. Blanco Telescope at the time for the Dark Energy Survey. Did I mention she was using the world’s most powerful digital camera, the 570-megapixel Dark Energy Camera, for which Texas A&M astronomer Darren DePoy served as the project scientist and for which Texas A&M’s Munnerlyn Laboratory also provided a key sub-component, a spectrophotometric calibration system known as DECal?

I digress as usual. In prepping the draft story in our news database, I realized I needed to find the perfect photograph equally unique to our story — preferably something to which not everyone else within the 400-scientist, 26-institution DES collaboration would have access. As fate would have it, I remembered a photograph I had stashed away awhile back, acquired somewhere in my internet/social media travels: an absolutely stunning shot of CTIO and Blanco, with the Milky Way Galaxy magnificently resplendent overhead.

Blanco_MilkyWay_MattDieterich_HigherRes

The Milky Way as seen over the Cerro Tololo Inter-American Observatory in Chile and the 4-meter Victor M. Blanco Telescope, home to the 570-megapixel Dark Energy Camera and some of history’s first images of a binary neutron star merger, taken by Texas A&M University astronomer Jennifer Marshall. (Credit: NSF ACEAP ambassador Matt Dieterich / Website and Instagram)

As I pulled it up on screen, I was relieved to find it was just as glorious as I remembered. At the same time, however, my mind wrestled with two competing realizations: what I knew I had to do and just how long the odds of success in that endeavor were. Nothing ventured, nothing gained, I thought. So I keyed in the photographer’s name, Matt Dieterich, and clicked on the link to his website. I dashed off a quick email using his online form and hoped for the best while I continued prepping the story.

Several hours later, Matt responded, and within the course of a few emails, a deal between strangers was sealed. As a self-described big fan of astronomy education, Matt was kind enough to lend his beautiful photograph to our publicity efforts. In turn, I agreed to send him the link to the story once it went live the following Monday.

I left the office that evening sure of two things: that I got the better end of our arrangement, and that there indeed are good people left in this world who do what they do simply because they are passionate about it and because it’s the right thing for a good cause. How’s that for a FridayFeeling-worthy hashtag?

Here’s where the story gets even better, if not full circle. As so often happens in life if not also science, Matt revealed to me once the story officially broke on Monday that the reason he got to see and document CTIO in the first place was courtesy of the National Science Foundation-funded Astronomy in Chile Educator Ambassador Program. Go figure that NSF is also one of the main funding sources behind the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO), which detected the ripples in space-time generated by the cataclysmic collision and issued the August 17 alert that kick-started the whole universal history-making process in motion.

Three cheers for fundamental science, breakthrough discoveries and beautiful images, on top of 11th hour teamwork and the kindness of strangers. There’s a lesson here far bigger than astrophysics, folks.

Thanks and gig ’em, Matt! In addition to making one heck of an NSF ACEAP ambassador, you hold a special place in our news archives and maroon-bleeding hearts. Rest assured you’ll always have a friend in Texas A&M Science.

* ~ * ~ * ~ * ~ *

Follow Matt on Instagram at https://www.instagram.com/MattDieterichPhotography/.

The Mysterious Missing Third

“Even if I knew that tomorrow the world would go to pieces, I would still plant my apple tree.” — Martin Luther

Texas A&M astronomer Nick Suntzeff (left) visits with 1940 Texas A&M distinguished petroleum engineering graduate and donor George P. Mitchell '40 at the 2010 dedication of the Stephen W. Hawking Auditorium within Mitchell's namesake George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy.

Texas A&M astronomer Nick Suntzeff (left) visits with 1940 Texas A&M distinguished petroleum engineering graduate and donor George P. Mitchell ’40 at the 2010 dedication of the Stephen W. Hawking Auditorium within Mitchell’s namesake George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy.

Nick Suntzeff and I don’t see each other nearly as often as I would like. But every once in a blue if not super moon, we get a chance to catch up the new-fashioned, 21st century way: via email.

The threads admittedly are few and far between these busy days, but what they lack in frequency, they more than make up for in substance, from word count to subjects covered.

Truth be told, Nick is one of the main reasons I started this blog. I realized shortly after I met him when he came to Texas A&M in 2006 that he’s a natural storyteller — and that he saves some of his best stuff for his written correspondence. No way should such greatness be relegated to my inbox if I can help it! (Incidentally, I can’t be alone in thinking he should write a book. Heck, I bet I can come up with at least one volume myself during the past decade. And that doesn’t even take into account his Facebook profile posts.)

You see, “talking” to/with Nick is like happy hour with one of your best friends — one who has an uncanny way of seeing right through your soul and speaking directly to your heart. It’s both a comfort and a disarming ease I absolutely treasure, mostly because I know it’s genuine and that it comes with great care and at great cost. It’s no secret that those who feel so intensely as to be so in tune with their surroundings do so at considerable personal risk. But Nick’s vulnerability is just another of his many endearing qualities, and I dare say it’s served him as well in professional circles as it has in his personal relationships.

Speaking of personal, here’s a story rather close to home and heart that Nick has graciously given me permission to share. No better time in my book -– figurative and maybe even that literal one I hope he writes — than the Thanksgiving season.

For a bit of context, we were discussing an idea I’d had for a possible new marketing campaign tentatively titled “I Am Texas A&M Science” and centered on science starts -– how our faculty, students and staff got into science, from choice of major to first jobs, and why they choose to stay. Lighthearted. Informal. Identifiable. Human. Fun.

Naturally, Nick took it from there and ran with it. The result is more than I could have hoped for as both a communicator and a human being. Inspiring on levels that transcend science and even the best marketing taglines. Read/see for yourself.

* ~ * ~ * ~ * ~ *

My first job — and a science job — was staining Pap smears in a pathology lab. I was only 16. It was a cool job, and I also got to help out in the real path lab, because my boss was also coroner for the county of Marin.

There is another part to the story, though. When I went to Stanford, it was expected I would pay one-third, my parents would pay one-third, and I had a state scholarship for the final one-third. Not much money really back then, but my parents were not wealthy. It got a lot worse when my father became ill and then paralyzed from a World War II injury and could not work. So the last two years, I would not have the one-third my parents could pay. I worked all summer and on many weekends for my one-third, but if I were to make up the missing third, I would have to hash or something.

But then I got a letter from Stanford stating that I was awarded a scholarship, and I did not have to pay the missing one-third and part of my share. So it all worked out. I never applied for a scholarship, so it was all mysterious.

It turns out the person I worked for when I was 16 was a physician and friend of my father’s. When he heard of my situation, he donated money to Stanford for my scholarship but required it to be anonymous. I learned the story much later when my father told me. But it was too late to thank Dr. John Manwaring.

What a wonderful gesture — one I will never forget. My father said Dr. Manwaring was proud that I went into science, and he wanted to help me.

cheers, nick

* ~ * ~ * ~ * ~ *

As I read it for the first time on an October Friday night, It brought tears to my eyes. As I format it tonight for this blog, it still does.

“It was a very important part of my life, and a life-learning event when I discovered what my father’s friend had done.” — Nick Suntzeff

Lack of scientific proof aside, I firmly believe the universe has its own way of showing us sometimes that we’re in exactly the right place at the right time doing the right thing for the right reasons. This is one of those times.

I also believe it’s never too late to say thank you. I humbly add my own here on the record for Dr. Manwaring and the many generous, forward-thinking visionaries out there like him. Talk about leading by example and enabling us to realize an immeasurable return on your investment in the process.

Happy Thanksgiving, indeed.

blog_quote

Observational History

Texas A&M University took its right to wonder cosmic in 2004, becoming a founding partner in the Giant Magellan Telescope and officially launching a first-rate astronomy program that was recognized in 2015 with selection to the prestigious Association of Universities for Research in Astronomy (AURA).

Although the program instantly became established on the international research scene with that $1.25 million lead gift from Texas businessman and global energy pioneer George P. Mitchell ’40, it hadn’t truly arrived in one universally critical aspect: academics. That big moment came earlier this year when the Texas Higher Education Coordinating Board (THECB) unanimously approved Texas A&M’s graduate degree program in astronomy.

Texas A&M astronomer and program director Nick Suntzeff was present at that meeting and recapped the historic event for his colleagues in the following email message capturing his stream-of-consciousness euphoria and heartfelt gratitude for all those who worked so hard to pave the way for an astronomically brighter future in Aggieland and across the Lone Star State. I’ll let Nick take it from here!

* ~ * ~ * ~ * ~ *

From: nsuntzeff
Subject: Astronomy MS and PhD
Date: April 28, 2016 at 7:21:02 PM CDT
To: “Astrophysics@TAMU”
Cc: Lara Suntzeff, Jeruska Vladislavic

Dear All,

Today, at around 2:30 p.m., the Texas Higher Education Coordinating Board voted unanimously to allow Texas A&M, through the Dept of Physics and Astronomy, to grant MS and PhD degrees in Astronomy. We are now the second public university in Texas to have a PhD program in astronomy. The ability to grant these degrees at A&M will be effective in only a few days. There are forms to be sent to the Provost, but that is all pro forma because she supports the program.

The THECB did not debate the program — they adopted it without discussion and gave it a unanimous vote. Two of the THECB members looked at me and smiled, obviously pleased with the outcome.

This was the last big piece in the creation of an astronomy program that was started ten years ago.

There are a number of people to thank. George Welch and Ed Fry, as department heads, have supported and encouraged the creation of the program and degrees. Dean Joe Newton also has been a tireless supporter of our efforts, and deserves our thanks. Provost Karan Watson, who knew how the THECB worked, paced the application process to allow all details be sorted out with staff at the THECB, such that there was little doubt that the program would be approved. Joe Pettibon, the Associate Vice President for Academic Affairs in the Provost’s office, was our point person in the final application process.

Astronomy before I came was headed by an Astronomy Committee who were committed to bringing astronomy to A&M. The 2003 members were Fry, [Richard] Arnowitt, [George] Kattawar, [Robert] Webb, and [Roland] Allen. They shared this vision for astronomy at our university. In addition, David Hyland, a professor of Aerospace Engineering in the College of Engineering, gave support through his college to our program in the early days, and was instrumental in the initial negotiations for our participation in the GMT back in 2004. These were our advocates for the GMT telescope.

We should not forget the backing of the whole department who have allowed our program to be carved out of the Physics Department, and agreed to add the nine faculty we now have in just ten years. We had many supporters, but I would like to call out the early support of Peter McIntyre, Chris Pope, Dimitri Nanopoulos, Bob Tribble, Bob Webb, Alexei Belyanin, Lewis Ford, Tom Adair, Don Carona, James White, Nelson Duller, and Ron Bryan. None of you know this, but it was Alexei Sokolov who led the first stages of the remodeling of the Munnerlyn Building.

The Texas A&M Astronomy Committee convened the Freedman Committee of 2003: Wendy Freedman, Rocky Kolb, Tod Lauer, Charles Townes, David Cline, and Craig Wheeler. I bet you did not know that we had two Nobel Laureates who recommended the formation of the Astronomy Program! After the establishment in 2006, Townes came to A&M to celebrate the beginning of the Astronomy Program, as did Steven Weinberg, who also lent his support for our program. Although I don’t know, I bet it was Marlan Scully who convinced them of the need of astronomy at A&M.

The Presidents of A&M — [Robert] Gates, [Elsa] Murano, [Bowen] Loftin, [Mark] Hussey, and now [Michael] Young — have all supported the creation of astronomy here at A&M.

We also should thank George Djorgovski, Ed Olszewski, and Rocky Kolb for their time on the 2015 visiting committee who gave us a glowing recommendation for the degree program.

A few other external astronomers helped us by writing letters and attending early conferences — Adam Riess, Bob Kirshner, Alex Filippenko, Brian Schmidt, and Geoff Marcy.

We have been greatly helped by our friends at UT-Austin and McDonald Observatory, especially David Lambert and Dean Mary Ann Rankin, and Taft Armandroff continues their help for us.

It goes almost without saying that it is Lucas [Macri] who shepherded the application over, what was it, six years? — whose absolutely stunning document detailing the need for astronomy at A&M convinced our betters in the administration, [the Texas A&M System Board of] Regents, and now the THECB. The word “stunning” was not mine; it was used by Allan Mitchie, who was the staff member of the THECB who coordinated and ultimately became an advocate for the application.

Finally, the Mitchell Family — George and Sheridan — have supported our efforts in so many ways. We would not have any program without the vision of George and unwavering encouragement from Sheridan.

I am sure I have left out names, and I apologize in advance.

cheers, nick

P.S. I attach photos from the panel meeting at Cook’s Branch in October 2003.

(From left:) George P. Mitchell '40, Ed Fry, Wendy Freedman, Rocky Kolb, Olga Kocharovskaya, Cynthia Mitchell, Tod Lauer and Debbie Fry. (Credit: Edward S. Fry.)

(From left:) George P. Mitchell ’40, Ed Fry, Wendy Freedman, Rocky Kolb, Olga Kocharovskaya, Cynthia Mitchell, Tod Lauer and Debbie Fry. (Credit: Edward S. Fry.)


Cynthia and George P. Mitchell '40. (Credit: Edward S. Fry.)

Cynthia and George P. Mitchell ’40. (Credit: Edward S. Fry.)


George P. Mitchell '40 and Robert Kirshner. (Credit: Edward S. Fry).

George P. Mitchell ’40 and Robert Kirshner. (Credit: Edward S. Fry).


George P. Mitchell '40 and David Lambert. (Credit: Edward S. Fry.)

George P. Mitchell ’40 and David Lambert. (Credit: Edward S. Fry.)

"I just like this picture of Stephen Hawking and friend -- meeting of the minds?" an excited Suntzeff quips. (Credit: Edward S. Fry.)

“I just like this picture of Stephen Hawking and friend — meeting of the minds?” an excited Suntzeff quips. (Credit: Edward S. Fry.)

Curiouser and Curiouser

“Every person passing through this life will unknowingly leave something and take something away. Most of this ‘something’ cannot be seen or heard or numbered or scientifically detected or counted. It’s what we leave in the minds of other people and what they leave in ours. Memory. The census doesn’t count it. Nothing counts without it.” — Robert Fulghum, “All I Really Need to Know I Learned in Kindergarten”

Robert Fulghum is right: Some of the most important things in life, you learn in Kindergarten. Or in my case, from one of my children’s Kindergarten teachers, longtime South Knoll Elementary School’s Sandy Felderhoff, whose email signature for as long as I’ve known her reads as follows:

“Children may not remember what you say, but they will remember how you make them feel.”

Like Sandy, I’m one who firmly believes in the power of words and feelings, not to mention of retaining and nourishing one’s inner child as a major key to staying hopeful, humble and curious. It’s one of the big reasons I feel such a kinship with teachers and also here in the Texas A&M College of Science, where curiosity is an unspoken job requirement. I believe in it so strongly, it’s our primary marketing tagline: Be Curious.

PassionatelyCurious

Several months ago, Texas A&M astronomer Nick Suntzeff and I were discussing the concept as an aside to the press release we were working on to promote a Brazos Valley Museum of Natural Science photography exhibit featuring two glass plates on loan from Carnegie Observatories that were taken by world-renowned astronomer Edwin Hubble. I told Nick that, in addition to the press release, I envisioned a blog on the value of curiosity, perhaps as a sequel of sorts to one I’d written a couple years back involving 1986 Nobel Prize in Chemistry recipient Dudley Herschbach. Here was Nick’s reaction:

“Sure! Dudley is amazing and one of those scientists who has never lost his interest in everything, including seeing humor in scientists’ curiosity. I wish he were here [at Texas A&M] more, because he is one of the most interesting and enjoyable scientists I have met. The Nobel Prize did not destroy his inner child — perhaps it amplified it!”

Einstein_Curiosity

As is often the case with Nick and I via email, the conversation continued to the point that I realized I had enough material for at least two blogs — this one and another I thought best reserved for National Teacher Appreciation Week to showcase the value of those gifted with the powerful ability to inspire long after the final exam.

I believe in Nick’s case, it takes one to know one. As usual, he explains it best below using both example and anecdote, helping me circle back precisely to where we began — memory and associated emotion, one of the most effective forms of lifelong learning simply because it so often effortlessly enhances and even eclipses the original subject at hand.

* ~ * ~ * ~ * ~ *

Dudley and I share something in common beyond an appreciation for curiosity. We were both undergraduate math majors at Stanford, separated by about 15 years. He even had one of my math professors. And he is really one of my heroes now.

Although I did not know him until I came to Texas A&M, he was always the ideal I had in mind of what a professor should be. In that sense, he was like my thesis advisor Bob Kraft, who passed away last year, or another mentor I had — Bob Williams, who was director first at Cerro Tololo Inter-American Observatory (CTIO) and then the Space Telescope Science Institute (STScI). They all had different personalities, but each of them shared a lot in common outside of science — humor, culture, empathy and personal discipline.

Bob Kraft was special. At one point, we were observing and began to chat about music. He had studied classical guitar and loved all sorts of music (except Russian classical music of the 19th century. Go figure). I had taken classes in music as an undergrad in which we read scores of symphonies and such and, from the perspective of a conductor, got to see the rich parallel structure of music and the history behind it. I also had a Russian family that took me to the opera (which I still really do not like) and the symphony (which I do). Kraft knew a lot more than I did, but he was intrigued that a grad student would know stuff like this. So he asked me if there were others who were interested and could read conductors’ scores. A number of grad students could — most grad students in astronomy played some sort of musical instrument. So we got together a group of about six of us, and every two weeks for a semester, we would meet at his house. His wife would cook a great meal; we would get a lecture on wine (on which he was an incredible expert); and then we would go to his living room, where he had a great stereo system, and listen to (1) a Mozart piano concerto, (2) a Sibelius symphony and (3) a Beethoven string quartet. He would dissect the music: “Here is the second theme, but coming in in the bass in a minor chord. . .” I was enraptured. I did not like string quartets, and I still don’t, but the study of the music was fascinating. He managed to get one credit for the “class,” and he gave us a second class a year later.

Now, imagine I would do the same today — invite students over, have wine, talk about music. It would be great, but I am sure there could be Title IX problems and legal issues about drinking, etc., and definitely no credits. But to me, that was what the academy was — an almost spontaneous explosion of learning by someone who was a master.

cheers, nick

Creative Logic

I took a Facebook quiz last week that pseudo-scientifically confirmed my suspicions: I’m becoming more analytical and order-driven versus creative and imaginative in my older age. I’m not sure if it’s a side effect of being a parent or working among scientists for the better part of the past 15 years, but clearly, it’s taking its toll. Yep, there are no two ways about it. I’m growing up.

If it's on Facebook, it has to be true, right? ;-) Here's hoping, anyway -- me and my mom!

If it’s on Facebook, it has to be true, right? 😉 Here’s hoping, anyway — me and my mom!

Fortunately, that doesn’t mean I have to abandon all hope, especially when I’m surrounded by people who cultivate curiosity for a living. People like Nick Suntzeff, who can copy me on a recent announcement about a community photography exhibition and inspire not one but two story ideas. While the rational side of my brain tells me I’m already hopelessly behind, the creative side insists. And remembers that secondary idea when I finally find the time to execute it exactly a month later on a Sunday morning while drinking coffee and chilling in the recliner and avoiding laundry. Pretty cool by any mental stretch, not to mention one of the biggest positives about smart phones.

But back to that spinoff idea. Nick and I were discussing how cool it is that there are two glass plates taken by world-renowned astronomer Edwin Hubble right here in Aggieland through May — the obvious lead and primary story. However, one of the reasons I started this blog is to have a ready outlet for those secondary stories, ideally first-person wherever possible. Considering Nick is a champ in this category, another classic on curiosity is born!

The Brazos Valley Museum of Natural History's "Capturing Time: The Story of Early Photography," showcases rare and beautiful vintage cameras, photographic equipment, printed materials and photographs, including two original Hubble glass plates on loan from the Carnegie Institution for Science. (Credit: Carnegie Institution for Science.)

The Brazos Valley Museum of Natural History’s “Capturing Time: The Story of Early Photography,” showcases rare and beautiful vintage cameras, photographic equipment, printed materials and photographs, including two original Hubble glass plates on loan from the Carnegie Institution for Science. (Credit: Carnegie Institution for Science.)

I’ll let Nick take it from here with his initial response to my dual pitch — a reaction that comes packed with the traditional bonus lesson or three. Enjoy!

* ~ * ~ * ~ * ~ *

Sure, anything to help motivate people to attend. If someone said that, say, that one of the petri dishes Salk used in discovering the vaccine for polio were on exhibit, I would definitely go to the lecture and exhibition! But most scientists, curiously, have no interest in anything else except their narrow fields. This is strange because we often hear that scientists do what they do because they have not lost their child-like interest in figuring out stuff. To me that means everything, including other scientific fields, the humanities and the like.

For instance, in the lecture in ASTR 101, I ask the question, why do we have the Olympics every four years? Well, obviously because the Greeks did. But why did the Greeks adopt four years? We all just think, well, why not? Or, who cares? But I think that it is an interesting question. And it turns out to have an interesting answer. It is because the Greeks were concerned/annoyed that the Sun and the Moon don’t have similar cycles. The Sun takes 365 (plus a bit) to go around the sky once relative to the stars, but the Moon takes 29.5 days in its orbit or 354 days to complete 12 orbits. That is, the cycles are off by 11 days, and this screws up the calendar such that the full moon does not fall on the same day each month. This is not an important problem to us today, but for a society which included number worship in their pantheon, it was really annoying. So they looked into how many solar cycles and lunar cycles it would take so that the Moon would end up being full on the same day of the month. There are various ways of solving this, but one way to notice that is, if you wait eight years, the calendar repeats itself pretty accurately. So the Greeks used an 8-year cycle for their civil holidays (that is, you only have to have eight calendars because the ninth will be the same as the first. So don’t throw away your calendars!). The number eight became an important number in their calendar, and the half-cycle became the Olympic cycle.

Later, another Greek astronomer came up with a better cycle of 19 years called the Metonic cycle, and for his discovery, Meton of Athens was awarded an Olympic laurel wreath. Cool! An astronomy event in the Olympics! I certainly would qualify for a bronze medal in writing memos.

Anyway, I just love this stuff. And while I can’t get many other scientists excited about it, I will never stop trying.

cheers, nick

 Depiction of the 19 years of the Metonic cycle as a wheel, with the Julian date of the Easter New Moon, from a 9th-century computistic manuscript made in St. Emmeram's Abbey (Clm 14456, fol. 71r). (Credit: Wikipedia Commons.)


Depiction of the 19 years of the Metonic cycle as a wheel, with the Julian date of the Easter New Moon, from a 9th-century computistic manuscript made in St. Emmeram’s Abbey (Clm 14456, fol. 71r). (Credit: Wikipedia Commons.)

Building Astronomy in Texas

This weekend, the Texas A&M Astronomy Group will host the statewide Building Astronomy in Texas (BAT) workshop within the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy on the Texas A&M University campus. At present, the tentative RSVP list includes more than 80 astronomers, students and research staff representing 18 different Texas universities.

Arguably a sweet spotlight by any standard, for us and the state, but I contend it’s merely an extrapolation of what the Texas A&M astronomers do best: learn about and from each other and then use that new knowledge to grow as people, as a program and as a profession.

One doesn’t have to look far to find a relevant case in point if not precursor: August 28. Apparently, it’s an annual tradition for the ASTRO group to host an all-day symposium the Friday before the fall semester starts. It’s organized and chaired by postdoctoral students, and each member of the group — from tenured professors to undergraduates — has the opportunity to give a 10-minute talk on his or her current research. This year, they ended the day with a new tradition: a group-wide dinner at Darren DePoy and Jennifer Marshall’s house. Check out this recap video for additional information on the symposium and further insight via first-person interviews:

When I was explaining to my husband about what they had planned for that day, from the postdoc-chaired symposium and group-wide presenting opportunity to the family-style dinner (not at a restaurant, mind you, but at the deputy director’s house), I said it reminded me of exactly how Bob Johnson –- er, make that Dr. Robert E. Johnson, AIA — treated me during one of my past professional lives in the Texas A&M College of Architecture. Bob himself interviewed and later hired me as a staff member in the CRS Center, established in 1990 by legendary Houston architecture firm CRS (Caudill Rowlett Scott) as one of the then-seven research centers and institutes within Texas A&M Architecture. I knew nothing of Bob nor the field, yet from Day 1, he gave me full access to every facet of his operation, from the financials to the server records to the CRS firm archives. I saw exactly what he saw, because he saw us as equals. What an empowering view! Yes, it’s a calculated management risk, but wow, the rewards that can be realized for all parties when that trust is there, real and reciprocated.

The Texas A&M ASTRO group is there, and it’s as powerfully compelling and exciting to me as learning about the historic rise of another Texas juggernaut on the architectural scene was, then and now. One resulted in two chapters in a book, and the sky’s the limit for the other. Take it from someone who didn’t know a lick about architecture or astronomy.

Mountain Majesty

So many among our faculty are such excellent storytellers. If not for their pesky day jobs, they could make a fine living as writers. I like to think this blog helps fulfill a dual purpose, enabling them to dabble in trivial pursuits if not possible second careers while bringing what I consider to be valuable behind-the-scenes perspective on any number of interesting subjects.

When it comes to astronomy, particularly anything happening in Chile, I’ve learned from pleasant experience to go straight to Nick Suntzeff. Nine times out of 10, he was either involved and/or present and, true to 3-sigma-level result verification form, he always has a good story.

The following is one that recaps his professional and personal history with Cerro Pachón, previously seen on this blog in his photographs taken on location in Chile. He originally posted said story on his Facebook page on Monday (April 13) and has agreed to let me cross-promote it here for the benefit of a broader audience.

Such a rich culture treasure! The mountain and its backstory’s not half bad, either.

* ~ * ~ * ~ * ~ *

“Back in the late 1980s and early ’90s, Cerro Pachón was the mountain I studied for future observatories as part of my job as staff astronomer at CTIO [Cerro Tololo Inter-American Observatory in Chile]. We had to haul the equipment up by mule and establish a small observatory to measure the site quality — seeing, laminar layers, wind speeds, temperature measurements. It now hosts the Gemini 8-meter telescope, the SOAR 4-meter telescope, and starting tomorrow [April 14] with the inauguration ceremonies, the Large Synoptic Survey Telescope, which will be a revolutionary 6-meter telescope that will digitize the sky every three nights.

Artist's rendering of the Large Synoptic Survey Telescope. (Credit: National Science Foundation).

Artist’s rendering of the Large Synoptic Survey Telescope. (Credit: National Science Foundation).


“The mountain is spectacular, as you can see in the video. We could camp on top of the mountain easily because for some reason, there is a year-round spring that runs about 100 feet below the summit.


“The spring is there, I was told by the geologists who did the boring, because of the tremendous hydrostatic pressure from the Andes and the South American trench. They were very surprised, though, that the spring was year-round. Someone was going to do a careful chemical analysis of the water to see where it was coming from, but I don’t know if they ever did this.

“John Irwin did the detailed site surveys in the 1960s and early ’70s, and he helped me understand the mountains there. You can still see the cement pad he put on Pachón between Gemini and LSST, partially buried in rock. It is just on the other side of the road from the spring. … He hated Pachón because he did the survey there during a cold part of the year, and the wind is horrendous on Pachón (which also makes the seeing better than on Tololo). He couldn’t wait to finish the work on Pachón and go someplace more hospitable.

Pachón in the distance, taken from the dormitories at Cerro Tololo Inter-American Observatory (CTIO). Pachón is the flat top mountain at the right, sort of at the end of the road in front. Gemini is in the middle of that mountain, with SOAR to the left and LSST on the right edge of that ridge.

Pachón in the distance, taken from the dormitories at Cerro Tololo Inter-American Observatory (CTIO). Pachón is the flat top mountain at the right, sort of at the end of the road in front. Gemini is in the middle of that mountain, with SOAR to the left and LSST on the right edge of that ridge.


“The broader site is called Cerro Peñon, which means ‘rocky peak’ in Spanish. Pachón means something like ‘skirt,’ according to an Aymará woman from the north of Chile. It also means ‘hairy’ or ‘lazy’ in Chilean slang. I was told that many peaks are called Pachón because the rockfall from the cliffs forms a base and the cliffs, made of columnar andesite, look like the pleated skirts worn by the women of the high Andes.

“Being on a mountain, alone at the telescope, is a magical experience. The sky is like nowhere else. So many stars! If you hold your hand close to the ground, you can see a shadow — the sky is so bright with stars. And maybe that night, you will find something in the sky no one has ever seen or understood before.”

Cerro Tololo mountain, as viewed from the Large Synoptic Survey Telescope (LSST) site.

Cerro Tololo mountain, as viewed from the Large Synoptic Survey Telescope (LSST) site.

#WordlessWednesday

“I look up at the night sky, and I know that, yes, we are part of this Universe, we are in this Universe, but perhaps more important than both of those facts is that the Universe is in us. When I reflect on that fact, I look up — many people feel small, because they’re small and the Universe is big, but I feel big, because my atoms came from those stars.” ― Neil deGrasse Tyson

Time-lapse video master Randy Halverson does it again, owning the night sky (or at least the documentation of it) in his latest production, Trails End. Unprecedentedly glorious.

Universe Today’s Nancy Atkinson sums up several high points in her related April 8 post. And you can click here for more on the story from Halverson himself.

Me, I’d say one word that also happens to start and end with a “w” covers it once again: Wow.

Time is Relative

Forrest Gump said it best: “Life is like a box of chocolates.” I feel the same way about interviews. In both situations, you never know what you’re going to get. Sometimes, it’s a mild-flavored, otherwise-forgettable center. Occasionally, it’s crunchy-nutty goodness or maybe coconut or nougat. And in other instances, it’s a mysterious, vaguely citrusy mess that you can’t spit into your napkin fast enough to save what’s left of your taste buds.

Every so often, however, it’s a total surprise — a good one, at that. A week ago, I found such a nugget in the middle of Texas A&M physics Ph.D. candidate Ting Li’s responses to my #Take5 for Texas A&M Student Research Week questions. Here’s her line that gave me pause:

“Every week during our group meeting, we each present our work from the past week and our plans for next week and get feedback from our advisors. …”

A weekly group meeting where each member in a 15-plus group presents? Uh, to borrow a popular social-media-driven phrase, ain’t nobody got time for that, and yet, clearly, a place as busy as the Munnerlyn Astronomical Instrumentation Laboratory does. I had to know more.

Yeah, this is pretty much how I feel about meetings. Judging from the fact that their source, buyolympia.com, is now experiencing 2-to-3-week shipping delays due to the popular demand, I'd say I'm not alone. (Credit: Will Bryant, buyolympia.com)

Yeah, this is pretty much how I feel about meetings. Judging from the fact that their source, buyolympia.com, is now experiencing 2-to-3-week shipping delays due to the popular demand, I’d say I’m not alone. (Credit: Will Bryant, buyolympia.com)

As luck would have it, Texas A&M astronomer and Munnerlyn Lab Director Darren DePoy happened by my office the next day. I seized my opportunity, motioning him in and expecting him to dismiss Ting’s altruistic yet surely erroneous statement. Except that he didn’t; he confirmed it. I fired back with a series of questions, the first one challenging him to explain exactly how — as in, how much time does it take each week to get through that many people’s to-do lists? (Keep in mind I do their PR, and although that means I know what amounts to probably less than the half of it, I do know that simply ticking off the names of each project/collaboration alone — with or without acronyms, partners involved and funding sources — would take a considerable time investment for one person.)

His answer? Roughly an hour. Oh, and it’s typically a set time each week — Wednesdays at 4 p.m.

His secret? Each person gets three slides and only 4-to-5 minutes to speak. (Move over, Robert; there’s a new rules of order sheriff in town, and his badge happens to be the world’s largest, whether spectrograph or digital camera.) Oh, and there’s nothing left to chance with regard to those three slides, either. Each must address a specific topic: What I did last week (Slide 1); What I think I’m going to do this week (Slide 2); and Problems/Questions I need to discuss (Slide 3). DePoy tells me they have an online archive of everyone’s slides dating back to the astronomical instrumentation group’s founding in 2008. (Muahahahahahaha!)

“It’s a good exercise for all of us, even [Texas A&M astronomer and Munnerlyn Lab manager] Jennifer [Marshall] and me, but it’s really good for the undergraduates in our lab,” DePoy says. “They learn how to present, how to structure their thoughts and communicate verbally, and how to defend their ideas among peers.”

On second thought, maybe there is time for that. And here, I thought their themed t-shirts for every project were impressive. …

Former Physics and Astronomy research associate and Munnerlyn Lab member Jean-Philippe Rheault, modeling a VIRUS spectrograph as well as one of the group's many custom-made t-shirts indicative of the lab's close-knit ties and infectious sense of camaraderie.

Former Texas A&M Physics and Astronomy research associate and Munnerlyn Lab member Jean-Philippe Rheault, modeling a VIRUS spectrograph as well as one of the group’s many custom-made t-shirts indicative of the lab’s close-knit ties and infectious sense of camaraderie.

To Boldly Go

I’m not usually one to encourage people to look to Hollywood for life inspiration, but every so often, it’s a shoe that fits.

As possibly the biggest sequel yet to Neil Armstrong’s one small step for mankind, the independent movie The Last Man on the Moon made its U.S. premier last Friday in Austin at SXSW. Par for my course, I found out the day after via this recap from KXAN-TV.

This exquisite documentary set for worldwide release in June tells the tale of Gemini 9A, Apollo 10 and Apollo 17 astronaut Capt. Eugene “Gene” Cernan, the 11th of 12 people in history to walk on the Moon and, as the final man to re-enter the lunar module Challenger on its last outing during what would prove to be the final Apollo lunar landing in 1972, also the last.

By all accounts out of Austin and other international cities where LMOTM has debuted, it’s a must-see production, both for its honest portrayal from Cernan’s all-too-humanly flawed perspective and for its breathtaking archival footage (apparently, even Cernan himself was impressed.) See for yourself in the official trailer below, as well as in this exclusive bonus clip released to coincide with SXSW:

Cernan is as genuine as they come and as equally unabashed in his support of future manned spaceflight as he was back in 1972. I love this related excerpt from his Wikipedia entry:

As Cernan prepared to climb the ladder for the final time, he spoke these words, currently the last spoken by a human standing on the Moon’s surface: “Bob, this is Gene, and I’m on the surface; and, as I take man’s last step from the surface, back home for some time to come – but we believe not too long into the future – I’d like to just [say] what I believe history will record. That America’s challenge of today has forged man’s destiny of tomorrow. And, as we leave the Moon at Taurus–Littrow, we leave as we came and, God willing, as we shall return, with peace and hope for all mankind. Godspeed the crew of Apollo 17.”

The timing is exceptional from my perspective, given that we’re less than two weeks away from Houston Chronicle science writer Eric Berger’s 2015 Physics and Engineering Festival-kickoff lecture on his yearlong Adrift series addressing the country’s past, present and future in space. In addition to marking the first date night for the hubs and I since our anniversary last August, this momentous occasion comes on the heels of some wonderful teachable moments during the past couple of weeks for our oldest son, whose 6th grade science class has been covering a unit on the U.S. space program. The grand finale? Watching the Ron Howard classic Apollo 13 — one of my all-time favorites — in stages. The movie features veteran actor Tom Hanks in the lead role of Captain James Lovell, one of three men along with Cernan and Jim Young to make the trek to the Moon twice, as well as Ed Harris as Gene Kranz, the iconic NASA Mission Operations director whose “failure is not an option” motto guided the success of America’s flight program for more than 30 years.

(Speaking of mottos and models, watch this Cernan tribute and tell me you don’t have goose bumps afterward!)

Typical pre-teen that my son is, he’s been most impressed thus far by Kevin Bacon’s ability to play a wisecracking smart aleck in his role as astronaut Jack Swigert, he of “Houston, we’ve had a problem” fame who earned his seat on the doomed mission courtesy of Ken Mattingly’s (played by Gary Sinise) ill-timed exposure to measles. Me, I’ve enjoyed the opportunity to mix business with pleasure and the ensuing discussions concerning the facts, failures, personalities and lessons surrounding the Mercury, Gemini, Apollo and Space Shuttle programs — history accentuated in many cases by his parents’ personal recollections. So interesting to see what resonates with our son, from the triumphs to the tragedies, and to contrast what we learned and sometimes witnessed through the comparative lens of his fresh eyes as a member of the generation I see as most ripe to fuel a Sputnik-esque resurgence.

Can’t wait to see how the movie ends for him once school resumes after spring break. As for the rest of the story, I see a family movie date in our future. Nothing like an inspirational summer learning opportunity for us all. 

AviatorInspiration_Quote