Down-Home Research

One of the things I enjoy most about video production is that it gets me out of the office. Don’t get me wrong, working in the luxury of air conditioning can be really nice in the summer, but anyone can go a little stir-crazy if they spend every single day at a desk. But every now and then, my job takes me places, and during production of our most recent Labors of Lab segment, it took me back home.

Laura Schwab, a senior biology major at Texas A&M who studies aquatic insects, is the star of our latest installment. As I was beginning the storyboarding process for her episode, Laura’s faculty advisor, Dr. David Baumgardner, invited me to film her and a few other students as they trapped insects at the Navasota River. Well, it just so happens I’m originally from Navasota, so this would be a homecoming of sorts for me. Sign me up!

Users are responsible for securing permission from the copyright holder for publication of any images. Contact communications@science.tamu.edu.

22130552952_dc93cdd920_o

Now, let’s be clear: The Navasota River isn’t what you would call a “pretty” river. It’s muddy, and there’s usually no shortage of algae. But it is buzzing with wildlife, especially the aquatic insects the students were so hoping to capture. And even though I grew up in that area, I’d never actually been near, or in, the Navasota River. This was a shoot I was truly looking forward to, even on a Saturday.

IMG_8574

Laura turned out to be an excellent choice for a Labors of Lab spot, and it was quickly apparent that she was Dr. Baumgardner’s right-hand person. Upon our arrival, they immediately divided up the students and waded into the river, where they embarked on separate excursions. While Dr. Baumgardner led two of the students off to catch insects in the river’s current, Laura and two other students went searching for snag, the random sticks and natural debris that protrude from calm parts of the river that often serve as nesting grounds for many water bugs.

B-roll.Still001Schwab LOL3.Still001

It was here that Laura’s natural leadership shined. She carefully chose which area of the river they would scour for snag, all while explaining to her team the reasons for her selection and demonstrating the proper way to collect a specimen. Whenever they found a particularly mossy stick that looked like it might be serve as a decent home for insects, they carefully doused the end of it in an alcohol solution and secured it in a Ziploc bag.

B-roll.Still002 B-roll.Still004

It was fascinating to watch. In the videos I produce, I often only film people talking about their research and, usually, I’ll stage scenes of people pretending to work on their research so it appears as if they’re actually doing something fascinating in the final video. Never have I actually had the chance to film genuine research in progress — until now. The scenes I filmed at the river that day were some of my best, in my opinion. Undergraduate students doing real research, having real fun. You can’t fake that.
IMG_8590_edited

Plus, there’s no place like home.

Oh, and speaking of that spot, watch Laura in action and hear her thoughts on doing field work for Dr. Baumgardner’s lab in our latest Labors of Lab episode below:

When Research Gets Wild

Scientists often go to great lengths for their research, but sometimes it gets downright risky.

Grace Smarsh ’14 is a Ph.D. candidate who has been working in the lab of Dr. Michael Smotherman, Texas A&M University biologist and a leading expert on bat behavior. Grace spent a total of 17 months during a three-year period in Tanzania studying the songs of its native heart-nosed bat to probe how their vocal ranges adapt to different social interactions. While on her quest to observe the winged creatures, Grace had to learn to coexist with the land-dwellers of the African bush, from the tiniest of insects to some pretty large cats.

Here’s Grace, discussing some of her encounters and how she coped with her rank in the animal kingdom.

And the Beat Goes On

One of my favorite questions beyond “Why Texas A&M?” for the many faculty, researchers and students I encounter in the course of this job is, “Why science?”

Texas A&M biologist Deborah Bell-Pedersen recently scratched the surface of this topic for the latest issue of Spirit magazine. She then agreed to take it one step further and more personal for our blog, delving into the earliest motivations behind her 30-plus-year career in higher education and fundamental research in circadian and fungal biology.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus's genes, which led to major insights into its biological clock.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus’s genes, which led to major insights into its biological clock.

* ~ * ~ * ~ * ~ *

My path to becoming a research scientist was not a straightforward one. Although science and math were always my favorite classes as a student, I wanted to work to save the animals on our planet through conservation efforts and to find ways to limit our negative impact on our environment.

I grew up in a small town in upstate New York that few people have ever heard of. In this small community, I could easily see how our growing population and lack of concern for building in new areas was negatively affecting local wildlife populations. So in my first two years of college, I majored in wildlife conservation.

It wasn’t long before I became concerned that I was not really learning what I thought I needed to in order to achieve my goal. I figured to really have an influence on conservation efforts, I would need a solid understanding of the biology and ecology of the organisms I so deeply wanted to protect. That’s when I began studying biology.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them  that drew her into biology as a possible career.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them that drew her into biology as a possible career.

In my junior year, a friend who was working in a research lab would tell me all about the experiments he was doing to uncover the mechanisms for how cells divide. This caught my attention because I assumed that scientists already knew nearly everything about cell division. While our textbooks made it seem like all of the problems had been solved, we really didn’t know much about what controls cell division. That’s when I decided to try my hand at research, and during my senior year I carried out a research project in cell biology. I found it incredibly exciting to be designing my own experiments to get answers to problems that no one had ever previously studied. On top of the thrill of basic discovery, the research also had important implications in animal and human health.

I was hooked and continued my journey toward a career in research and teaching. Along the way, I have found joy from continuing to make basic discoveries in biology, some of which now appear in textbooks and have potential for the development of new approaches to treat cancer.

As a career, I would say there is nothing better. The research we are doing will have a major impact on society; I learn something new every day; I interact with fascinating people from all different cultures; I travel all over the world to speak about our work at meetings; but probably the most rewarding aspect is my role in training students to be our next generation of research scientists, many of whom will make important new discoveries themselves.

Neurospora crassa samples growing in Bell-Pedersen's Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Neurospora crassa samples growing in Bell-Pedersen’s Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Research scientists do work long hours, but for me, doing experiments and analyzing data is fun and more like a favorite hobby than actually working. Despite these long hours, I still find time to maintain my childhood interest in animals and pretty much have my own zoo — one rescued dog, one cat, two miniature donkeys and one horse. I take riding lessons twice a week on my horse, Tea and Crumpets, to learn dressage.

In addition, I have also always enjoyed music. People are always surprised when they come to my office and hear anything from opera to hip-hop blaring from my speakers. I do play the piano a little and in recent years, I have started learning to play the violin.

In many ways, I think playing music is a lot like conducting research. Both are a lot of fun, require creativity and concentration, and have the potential for long-lasting impact on society.

* ~ * ~ * ~ * ~ *

Yeah, Bell-Pedersen is onto something here, and go figure that there’s actual science behind it, too. Watch it, then get to work and/or go play!

Of Forests, Trees and Maroon Roses

Ever find yourself so focused on the little things wrong that you miss the big picture of all that’s right? Easy to do when the day-to-day begins to rule not only the day, but also the week, then the month, then the next month, and so on. Sometimes it takes conscious effort to break this vicious cycle, but thankfully, there’s one routine assignment each year in the late spring/early summer that guarantees I stop and smell the maroon roses (so to speak) representative of Texas A&M Science. And boy, were they particularly fragrant in 2013. Or 2012, I should say.

Each year Texas A&M Science Communications compiles an annual report cataloguing our teaching, research and service efforts across all departments for the previous calendar year. Collectively and per individual tenured/tenure-track faculty member. It’s no small endeavor, with the end result being as weighty as the three-ring binder in which it arrives. One of the first pages within said binder is a foreword from Dean of Science Joe Newton summarizing the highest of the year’s high points — my primary contribution to the larger effort, which mostly involves pinning Dr. Newton down and making him focus on the rear-view mirror even as he’s engrossed in all levels of forward-looking responsibilities as our designated driver. Typically each department head also provides a foreword for each respective unit. All in all, it’s pretty impressive information that definitely goes against the Aggie tradition of humility (arguably the eighth core value!) but speaks volumes about what we value as a college and across the fundamental sciences and professions we represent.

Rather than relegate that summary to the binder for another year, I want to share it here so that you, too, can see it’s been a good year for the roses. Congratulations, Texas A&M Science, but your work here isn’t done. We’ll get more binders ordered…

FOREWORD FROM THE DEAN (2012 Annual Report)

As dean of the College of Science at Texas A&M University, it is my obligation and privilege each fall to take stock of our progress toward our three-part university mission — teaching, research, and service — and to reevaluate our collective commitment to ongoing excellence in all respective phases.

I am pleased to report that the Texas A&M College of Science continues to deliver on its unspoken yet inherent promise to advance discovery and solve real-world problems. In the past year alone, our scientific ingenuity has resulted in hundreds of top-notch graduates and more than $56 million in sponsored research projects that create new knowledge and drive economies around the world. Each year despite all economic indicators to the contrary, those awards steadily continue to increase, both in amount and stature, as testament to the strength of our programs and overall reputation for excellence.

Beyond research funding, the past year marked another major milestone in external fundraising — a landmark $20 million legacy gift by George P. Mitchell ’40 and the Cynthia and George Mitchell Foundation toward the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy that followed their $25 million gift (half of which was credited to Texas A&M) to the Giant Magellan Telescope in 2011.

Our individual teaching, research, and service highlights in 2012 were many and magnified, highlighted primarily by big discoveries and major research-related awards in each department. Two faculty, physicists Marlan Scully and Alexander Finkelstein, were honored for lifetime research achievement — Scully with the Optical Society’s highest award, the Ives Medal/Quinn Prize, and Finkelstein with a Humboldt Research Award. Chemist Oleg Ozerov was recognized with The Welch Foundation’s Norman Hackerman Award for Chemical Research, while fellow chemist David Russell earned the American Chemical Society’s Field/Franklin Award for Outstanding Achievement in Mass Spectrometry. Three faculty received National Science Foundation CAREER Awards (Helmut Katzgraber, Wenshe Liu, Grigoris Paouris),

In other notable accolades, Chemistry’s Sherry Yennello was recognized as a Fellow of the American Association for the Advancement of Science (AAAS), while Karen Wooley was named 2012-14 chair of the Nanotechnology Study Section within the National Institutes of Health Center for Scientific Review. Mathematics celebrated 11 inaugural American Mathematical Society Fellows (Harold Boas, Ronald DeVore, Ronald Douglas, Rostislav Grigorchuk, William Johnson, Peter Kuchment, Gilles Pisier, Frank Sottile, Emil Straube, Clarence Wilkerson, and Guoling Yu, who was named the inaugural holder of the Thomas W. Powell Chair in Mathematics), as well as its first Texas A&M Presidential Professor for Teaching Excellence (Boas).

 In global research breakthroughs, our high-energy physicists were part of international experiments at the Large Hadron Collider and Fermilab that confirmed preliminary proof for what is believed to be the Higgs boson particle. The Dark Energy Camera, for which astronomer Darren DePoy serves as the project scientist, captured and recorded its first images high atop the Blanco Telescope in Chile. First blast occurred at nearby Las Campanas Peak, marking the beginning of site preparation for the Giant Magellan Telescope, which also celebrated successful completion of its first mirror. Chemist Joe Zhou received his second Department of Energy grant in as many years to develop more efficient natural gas storage tanks for passenger vehicles. Our faculty (Alexander Finkelstein, Christian Hilty, Oleg Ozerov, Jairo Sinova, Clifford Spiegelman, Renyi Zhang) also are involved in six of the eight joint research projects encompassed in a $1.5 million campus-wide collaboration with Israel’s Weizmann Institute of Science.

 On a campus achievement front, Physics and Astronomy’s David Lee was selected as a university distinguished professor, Texas A&M’s highest academic honor for faculty. Biologist Michael Benedik was named Dean of Faculties, and a record-tying six faculty received university-level Texas A&M Association of Former Students Distinguished Achievement Awards — Tatiana Erukhimova and Sherry Yennello in Teaching, Kim Dunbar and Nicholas Suntzeff in Research, Marcetta Darensbourg in Graduate Mentoring, and Edward Fry in Administration. Physicists Olga Kocharovskaya and David Toback earned Sigma Xi Distinguished Scientist and Outstanding Science Communicator Awards, respectively. Toback and chemist David Bergbreiter also earned their second University Professorships for Undergraduate Teaching Excellence (UPUTE) appointments. Mathematics’ Sue Geller received the Texas A&M Honors and Undergraduate Research Director’s Award, while chemist Kim Dunbar earned the inaugural Texas A&M Women Former Students’ Network Eminent Scholar Award.

Students shared equally in the accomplishment spotlight, none brighter than Mathematics’ Tanner Wilson, who earned one of two Brown-Rudder Awards presented each year at spring commencement to the top Texas A&M seniors. Allyson Martinez (Biology) and Meng Gao (Physics and Astronomy) earned Phil Gramm Doctoral Fellowships, while Charles Zheng (Mathematics) received an NSF Graduate Research Fellowship. Mathematics major Frances Withrow earned a Pi Mu Epsilon/Society for Industrial and Applied Mathematics (SIAM) Award at MathFest 2012, and physics major Daniel Freeman received the 2012 Outstanding Thesis Award for Undergraduate Research Scholars from Texas A&M Honors. In addition, four graduate students merited Distinguished Graduate Student Awards for their exemplary efforts in research, teaching and mentoring (Michael Grubb and Casey Wade, Chemistry, doctoral research; Wenlong Yang, Physics and Astronomy, master’s research; Scott Crawford, Statistics, doctoral teaching).

One of our most cherished former students and longtime External Advisory & Development Council champions, the late Dr. Robert V. Walker ’45, received a Texas A&M Distinguished Alumnus Award, while Statistics’ Jerry Oglesby ’71 and our own chemist Daniel Romo ’86 were inducted into the college’s Academy of Distinguished Former Students.

From an educational outreach perspective, Chemistry hosted the 25th edition of its award-winning Chemistry Open House and Science Exploration Gallery, while record crowds attended both the Math MiniFair and Physics & Engineering Festival. Dozens of women participated in a three-day, national physics conference hosted by our Educational Outreach and Women’s Programs Office, while the Mitchell Institute unveiled the Physics Enhancement Program (MIPEP) to improve high school physics teaching. The Texas A&M Math Circle also was born to engage and encourage bright middle school students, while Houston-based Halliburton put its name and grant support behind a new “Mathematics All Around Us” outreach program. The Greater Texas Foundation committed $50,000 to round out a $150,000 challenge grant started by another big name in Texas industry, Texas Instruments, to benefit aggieTEACH. Finally our Center for Mathematics and Science Education (CMSE) is helping to lead a new $10 million science and technology educational outreach program funded by NASA.

Last but certainly not least, longtime Dean’s Office staff member Carolyn Jaros retired in May, capping 30 years of service to Texas A&M and to three different deans in the College of Science. Biology also saw the retirements of three dedicated career staffers: Tonna Harris-Haller (associate director, Freshman Biology Program), Jillaine Maes (assistant head of the department), and Vickie Skrhak (business coordinator).

In 2012 as in years past, I thank each of you, not only for another year of great achievement, but also for the continued distinction you bring to both Texas A&M University and the College of Science in your efforts to deliver the highest quality of science education, scholarly research, and technical expertise and service to benefit the world.

Mathematical Modeling in Biology REU

I’m one of of the faculty mentors for the Mathematical Modeling in Biology REU program, which I originally talked about here. Two of our five students are working with me on a project this summer. We are a three-woman dream team!

We are studying mathematical models of how organisms coexist and compete while using the same resources in an ecosystem. There are a variety of ways that organisms use resources. For example, plants need nitrate and phosphate to grow, and without sufficient quantities of both of these nutrients, the plant will die. On the other hand, humans can get energy for daily activities from carbohydrates, protein or fats. If we don’t have carbohydrates, we can substitute some protein or fat and get by; for the sake of providing us with energy, we need any one of these, but we don’t need all. Modeling has been used with multiple organisms using one type of nutrient utilization, but not a lot with multiple organisms having multiple ways of utilizing nutrients. That’s what we are working on.

Mathematical Modeling in Biology REU Group

Mathematical Modeling in Biology REU Group

Thus far, we’ve reproduced some results from existing models with a common type of nutrient utilization; in particular, we’ve shown how one organism can outcompete others for the same resources, and how two organisms can coexist even though they both utilize the same resources. We are working on learning some of the background science of how organisms use resources and the equations and mathematics associated with this. We are performing a literature review to familiarize ourselves with what research has been done in the past and has been published recently. We are learning what types of questions scientists are interested in and have answered in the past, and also figuring out where we can make a novel contribution. And, given that we are a mathematics program, it won’t surprise you to learn that we are developing the equations we need to make the modifications required to the model we have so that we can do something new.

The other three students in our program have interesting problems to work on as well. Two are working on mathematical models for how atherosclerosis (hardening of the arteries) occurs and how diet and exercise might improve arterial health. One student is working on mathematical models for controlling invasive species; personally, I am hoping he will find a way to mitigate the spread of fireants.

Research Experiences for Undergraduates

It’s summertime in Aggieland, and one thing that means is an influx of students from across the United States participating in Research Experiences for Undergraduates (REU) grants at the university. The Math Department is only one of many National Science Foundation-funded REU sites at Texas A&M. The Math department has been running an REU site every summer since the program was started in 1999.  This summer, we have 14 students, 8 women and 6 men, with us for 8 weeks.  Five students are participating in the program in Number Theory, five in Mathematical Modeling in Biology, and four in Algorithmic Algebraic Geometry.  The Algebraic Geometry group is supplemented by two local undergraduates.

REU students and mentors, summer 2013

REU students and mentors, summer 2013

Students generally have lectures and homework to deal with for the first two weeks of the program. This familiarizes them with the foundational mathematics they will need for the research problems they’ll be working on.  By the middle of the second week, they are given research problems and get started trying to solve them.

This past Friday, the last day of the second week of the program, all the students and mentors in our REU got together for lunch. Students gave short presentations describing their research problems. At the end of the fourth and sixth weeks of the program, we’ll get updates from everyone on their projects. At the end of the eighth week of the program, we have a Minisymposium, where all our REU students present their results.