A Horse By Any Other Name

Days outside the office are few and far between. All the more reason I find it somewhat prophetic if not entirely fitting that my most recent day out once again was for the purposes of a video shoot featuring another female distinguished professor, Dr. Marcetta Darensbourg.

Five years ago next month, this blog began as an indirect result of Dr. Karen Wooley, who, like Darensbourg, is one in a long line of preeminent chemists to grace Texas A&M University’s faculty. In hindsight, I suppose it was merely par for the course that I would bump into Sir Ian Scott — the equine version, that is, so named by Darensbourg in tribute both to lineage and her longtime Texas A&M Chemistry colleague Alastair Ian Scott, who redefined both organic and natural product chemistry prior to his untimely death in 2007.

Sir Ian Scott, waiting for his post-ride brushing and carrots, if not the cameras to leave his barn.

Sir Ian of the equine variety is the grandson of Great Scott (affectionately known as Scotty) and the son of Gwenael, better known as Gwen and Darensbourg’s mare. She is Darensbourg’s longtime mount of choice, including on this particular day when Gwen, Ian, Halley Berry and Century Mark (along with Darensbourg and Look Sharp Farm’s other respective riders Jenny, Colleen and Kelly) were the stars in Protagonist Digital’s current work at hand: a video showcasing Darensbourg as the 2018 Southeastern Conference Professor of the Year.

(From left:) Marcetta Darensbourg, along with Jenny, Kelly and Colleen, who are set to ride once Ned’s camera starts rolling on a beautiful April morning in Aggieland.

Darensbourg is no stranger to the spotlight, having recently been elected to the National Academy of Sciences last spring. Prior to reaching the national pinnacle of her discipline, she became the first woman to receive the American Chemical Society (ACS) Distinguished Service in the Advancement of Inorganic Chemistry Award, the society’s top annual honor in this realm. She is an inaugural Fellow of the ACS as well as a Fellow of the Royal Society of Chemistry and the American Academy of Arts and Sciences, one the country’s oldest and most prestigious honorary learned societies. Closer to home, she and her husband, fellow Texas A&M chemist Don Darensbourg, rank as the first distinguished professor couple in Texas A&M history.

Don and Marcetta Darensbourg, during their Tulane University days. (Credit: Marcetta Darensbourg.)

Marcetta describes Don as “the major pillar in my support network for over five decades.” They met in graduate school, at which point Marcetta says “the proximity effect took over.” They bonded over chemistry as well as their love of horses — specifically, German warmbloods, which they ride and raise on their 50-plus pastoral acres located in southeast College Station.

“We share our farm with 10 wonderful equines and two dogs, Willie and Pippa,” Marcetta says. “A score of Aggies, usually animal science majors, have helped us attend to the horses over the years, and we have helped the Aggies earn money for school. We work hard every day and then meet on the back porch each evening about 7 or 8 to share a glass of wine. Sometimes, we talk about the day’s events; sometimes, we just talk about the news and the critters we live with.”

While they primarily stick to Sunday trail riding nowadays, both Marcetta and Don did dressage in decades past and hosted countless clinics to promote the sport. In 1992, Marcetta earned a silver medal from the United States Dressage Foundation — tangible proof of the competitive fire that fuels both her personal and professional interests. In 2016, she and Great Scott teamed up to complete her first Century Ride, which, in true family form, also showcased Gwen and Sir Ian (ridden by Jenny and Colleen, respectively) in a musical freestyle presentation.

Marcetta Darensbourg and Gregor, en route to a United States Dressage Foundation silver medal in 1992. (Credit: Jim Stoner Photography.)

When it comes to the farm’s naming rights, Don defers to Marcetta, who describes it as a creative exercise that begins with the first letters of the horse’s sire and dam (for example, “H” and “B” in the case of Halley Berry, whose name also reflects the couple’s love of movies). From there, it’s a combination of observation, from markings to temperament, culture popular and otherwise, and gut instinct — the same innate resolve she credits for carving out her clear career choice, even as a child.

“I was set on being a college professor when I was 4 or 5 years old — and on being a scientist since I was in high school,” Marcetta says. “I knew I wanted to do something that incorporated nature, based on my love of wilderness, which ties back to my two biggest passions: chemistry and horses. Both require discipline and a constant respect for and perfecting of the process in order to make things better, whether for the horse or for society.”

Marcetta Darensbourg, on set with Protagonist Digital’s Jason Ruha at Look Sharp Farm.

Marcetta admits competition is a powerful motivator, whether in the arena or research laboratory. These days, however, her primary goal is to fulfill what she considers to be her ultimate responsibility: preparing her students to be “citizen scientists.”

“Everyone can be diligent observers of the world around her/him, gather and interpret data, question hypotheses and look for logic in a report,” she says. “To be a citizen scientist is a noble calling — and develops better citizens.”

Makes perfect horse sense to me.

* ~ * ~ * ~ * ~ *

As a bonus feature, check out the related story on Darenbourg on the SEC’s It Just Means More blog or the official vignette that premiered at the 2018 SEC Awards Dinner in Destin.

Year in Review: Undergraduate Statistics Program

This weekend as part of August commencement ceremonies, Texas A&M University will award diplomas to the largest summer class in its 140-year history — a group that includes the first two graduates of one of its newest degree programs, the bachelor’s of science in statistics. Texas A&M statistician Alan Dabney, one of two faculty advisors for the program, agreed to summarize his thoughts on the program’s historic first year — 12 months that helped establish a firm foundation for both the students enrolled and the Department of Statistics, as well as within a broader profession with the powerfully appealing potential to impact so many others.

Dabney_Classroom

In addition to serving as a faculty advisor for the undergraduate program in statistics, Texas A&M statistician Dr. Alan R. Dabney is one of two university faculty members appointed to 2016 University Professorships in Undergraduate Teaching Excellence (UPUTE) at Texas A&M University.

 

* ~ * ~ * ~ * ~ *

Statistics currently is one of the hottest career options around! A few key indicators: LinkedIn has listed statistician as one of the top 5 “Hottest Skills” sought by employers in each of the past two years; CareerCast named both statistician and data scientist as among the top 5 professions for two consecutive years; U.S. News & World Report ranks statistician as the top job in business, top job in STEM and No. 17 on their list of 100 Best Jobs overall; and the Bureau of Labor Statistics ranked it as the 9th fastest growing occupation between 2014 and 2024.

In response to the growing demand for statisticians worldwide, Texas A&M University introduced a brand new undergraduate degree program in fall 2016. While the Department of Mathematics has offered an applied mathematical sciences (APMS) degree with specialization in statistics, the new bachelor’s of science degree in statistics offers a unique opportunity for Aggies to kick-start their statistical careers and set themselves up in a rewarding vocation.

If you’re considering a career in this multidisciplinary field, read on to find out more about the program, the successes of our earliest graduates and where we’re headed.

STAT_Classroom_Full

After providing fundamental statistics instruction for the past five decades in support of hundreds of undergraduate degree programs across Texas A&M University, the Texas A&M Department of Statistics began offering its own bachelor’s of science degree in fall 2016.

Bachelor’s of Science in Statistics

For the first time in history beginning last fall, Texas A&M undergraduate students have the opportunity to earn an undergraduate degree in statistics!

The program is delivered by an already distinguished department recognized as one of the nation’s top graduate program providers. As such, the bachelor’s of science in statistics has been designed to rigorously prepare students to enter the workforce or continue their studies in graduate school.

Through newly developed classes, the program introduces students to the theoretical and applied fundamentals of statistics and data science. However, because statistics is such a multidisciplinary and collaborative profession, the bachelor’s also requires students to complete four classes in an outside area of specialization. This sets students up to confidently enter a workforce where collaborating with non-statisticians will be an important part of their jobs.

While the department has outlined some popular areas for this outside study — including business, math, computer science, biology, engineering and pre-med — students are given the flexibility to choose their own paths of specialization. In many cases, if specialization classes are carefully chosen, students can also graduate with a minor to add to their employability as a statistician.

In the final year of study, students are then required to apply their skills to solve substantial, real-life problems in a capstone project under the direction of a faculty member. The capstone is intended to draw on all completed courses and provide a comprehensive exercise in statistical application. We expect it to be excellent preparation for both a career as a professional analyst and for conducting fundamental research.

One notable highlight of the new program is the introductory survey class STAT 182 that shows students how statistics is used in the modern world. Last year, guest speakers were invited to address the class each week to inspire our future statisticians with real-life stories. Among these speakers were renowned statistician Nate Silver from fivethirtyeight.com; senior statisticians from Google, Facebook, Biogen, MD Anderson Cancer Center and Lawrence Livermore National Laboratory; recruiters from Deloitte, Goldman Sachs and other industry juggernauts; and several distinguished professors, both from our own department and around the world. This class gives our students a highly valuable peek behind the scenes at cutting-edge statistics in the real world. Screencast recordings of the guest speakers from this past spring semester are available on YouTube.

NateSilver_STAT

Statistician and FiveThirtyEight.com founder Nate Silver (left, front of room) fields questions from students and Texas A&M statistician Alan Dabney (right, front of room) in the Texas A&M Department of Statistics during a March 2017 visit to Texas A&M.

Scholarships in Statistics

Although it’s early days for the new statistics undergraduate program, the department has already managed to secure a number of scholarships to enhance the educational experiences for our top-tier students.

Four students enrolled in the bachelor’s of science in statistics — Jose Alfaro, Steven Broll, Caroline Lee and Xin (Thomas) Su — have received $2,500 awards for use during the course of the 2017-2018 academic year. Two of these scholarships are sponsored by Shell Oil, while the other two come directly from the Department of Statistics.

To learn more about the scholarships available to statistics undergraduates, click here.

Internships in Statistics

Another valuable feature of the bachelor’s of science in statistics is the opportunity to obtain internships.

Two students spent their summer gaining paid, hands-on experience in dealing with genomic data sets, courtesy of Advanta Seeds, an international agronomic and vegetable seed company. A third student is set to work with the Texas A&M Office of Undergraduate Studies to learn from student feedback on academic advising experiences, while another will work with the University Honors Program to develop predictive models for identifying at-risk students. Finally, a fifth will work with a faculty member in the College of Nursing to explore and analyze scores on nursing standardized tests.

Additional internship opportunities are in constant development.

STAT_Generic

Career Options for Statistics Graduates

Career options for graduates with a bachelor’s of science in statistics are almost endless! Graduates will be able to pursue a career in any of the numerous industries in which there is a need for statisticians. Possible venues include businesses ranging from small to large, governmental agencies, hospitals, the tech industry, the pharmaceutical industry and universities.

In addition, our graduates will be well-prepared to continue their studies in graduate school.

To learn more about statistical career options, see the American Statistical Association website.

A&M Undergraduate Statistics Graduates

After the first year of operation, we’re proud to announce the graduation of two bright and gifted students from the bachelor’s of science in statistics program. Here’s a little about their journeys and experiences at Texas A&M:

Tessa Johnson

Tessa didn’t come to Texas A&M, planning to major in statistics. Instead, she chose a field that she enjoyed — mathematics — and would allow her to study the many different things in which she was interested.

As one of the first two graduates of this new degree program, Tessa says she found the experience to be invaluable. She enjoyed the fact that the program allows you to take your study in almost any direction that you’d like.

After graduating with outstanding grades and a double major, Tessa was awarded the prestigious James B. Duke Fellowship to continue her study of statistics in the Ph.D. program at Duke University. She feels that Texas A&M has prepared her very well for grad school and hopes that the department there allows for the same kind of flexibility for student-directed research.

JohnsonTessa_DabneyAlan

Tessa Johnson ’17 (left) visits with Texas A&M statistician Alan Dabney, one of two faculty advisors for the undergraduate program in statistics. Johnson and Sharon Wang ’17 each received two of the most versatile and powerful undergraduate degrees across the campus and nation on August 11: a bachelor’s in applied mathematical sciences and the first bachelor’s in statistics awarded in Texas A&M history.

Sicheng (Sharon) Wang

Sharon took a few statistics classes before enrolling in the new program. After enjoying them, it felt like a natural move to add a statistical major.

The thing she says she enjoyed most about the new program was the ability to be mentored by Texas A&M’s top-level statistics professors. Not only did she find them to be excellent educators, but she was also impressed by their willingness to offer extra help at any time.

Graduating with exceptional grades, Sharon’s been admitted to the data science Ph.D. program within the Department of Computer Science and Engineering here at Texas A&M. This move will take her one step closer to her goal to become a professor in an area that’s both challenging and a passion of hers.

For any freshmen who are considering pursuing their own bachelor’s of science in statistics, Sharon recommends trying out a few statistics courses beforehand. She also suggests talking to the program advisors who are more than happy to talk with students about the many different data-driven career options they can pursue.

img_7463

Sicheng (Sharon) Wang, pictured with her Texas A&M diploma.

The Future of Undergraduate Statistics at Texas A&M
We have 35 current majors and an additional 35 incoming freshmen and transfers in the fall semester. Due to the large amount of interest in statistics among students and parents, these numbers are expected to steadily grow. As the program grows, here’s a sneak peak at the department’s future plans.

Undergraduate Students Association

Just as the graduate program has an active student association, we are in the process of forming the Statistics Undergraduate Student Association (SUSA). SUSA will serve to connect our students with each other, the graduate students and the faculty, in addition to providing opportunities for career development through job talks and recruiter visits.

Dedicated Academic Advisor

In June, the Department of Statistics welcomed a dedicated undergraduate academic advisor, Alyssa Brigham. Alyssa is available to help students decide which classes to take, manage student interactions with the university and advise on career opportunities and preparation.

Honors Program

We also plan to develop an honors program for high-performing statistics undergraduates. This will involve the creation of at least four dedicated honors classes in core areas of the degree program to teach and refine skills at the highest level.

Combined Bachelor’s and Master’s Program

Another option for future high-performing statistical students will be to complete a fast-tracked, combined B.S. and M.S. degree. This will allow students to complete both the undergraduate and graduate degree programs in five years, when it would otherwise take six.

STAT_Classroom_Vert

Why Texas A&M for Undergraduate Statistics?

As you can see, the new bachelor’s of science in statistics presents students with a great opportunity to gain early entry into a promising career path. But all that aside, why choose Texas A&M for your study? Why, indeed:

  • Highly ranked statistics department – The new undergraduate degree has been developed by a department that’s already built a solid reputation in the statistical world. We’re renowned for offering students access to a wide breadth of real-world problems in a vast array of application areas, including public health, engineering and spatio-temporal applications, such as climate change, business analytics, forensics, astronomy and many more. Graduates from the department are highly sought after and respected in both academics and industry.
  • Excellent curriculum – Texas A&M’s program is comprehensive, rigorous and highly flexible. It has been designed to prepare undergraduates on a level comparable to that of many master’s of science programs.
  • Invaluable connections – With established connections to local businesses and other university faculties, the undergraduate program allows you to network and gain experience in working with a wide variety of potential employers. Our contacts include oil and gas companies, banks, cancer research centers, national laboratories and other federal agencies, and leading researchers around the world.
  • A&M = a great university – With a solid reputation, strong traditions and community, there are countless reasons why you’d be proud to call yourself an Aggie.

To learn more or inquire about enrolling in the bachelor’s of science in statistics program, visit the degree overview webpage.

Thanks and gig ’em!

Dabney_Classroom2

Improving STEM Education: It’s About Time

The following is a guest post from Robert Wilson ’89, a former 3rd grade science teacher at Bryan Independent School District’s Blue Ribbon-recognized Johnson Elementary School. Wilson, a Ph.D. candidate in education curriculum and instruction at Texas A&M and longtime science educator, currently is Director of STEM Classroom Products for Galxyz’s Blue Apprentice, a new app that is putting the interactive adventure into elementary science and making international headlines, including for a recent partnership with Popular Science to create an entire line of game-based K6 science resources.

Although Wilson may no longer be head of the class at Johnson, his heart clearly remains with his students and singularly invested in their best interests, particularly with regard to the S in STEM.

(Credit: SAHMReviews.com)

(Credit: SAHMReviews.com)

* ~ * ~ * ~ * ~ *

Sometimes we put too much faith in a system without understanding all that is involved. I support our teachers and administrators and respect the job that they do for our children every day. However, the legislative constraints in which they work are having a negative impact on our students’ STEM (science, technology, engineering and mathematics) education. If we are to improve STEM education as a nation, we have to take a long hard look at what is happening within classrooms at the elementary level concerning the amount of time that teachers are teaching science, along with topic selection.

Do you have a child in elementary school? How much science instructional time are they receiving?

planets

Food for thought follows, with accompanying citations:

Blank, R. K. (2013). Science instructional time is declining in elementary schools: What are the implications for student achievement and closing the gap? Science Education, 97(6), 830-847.

“The recommendations for improvement of science education from the NRC indicate that the elementary years are an important time to capture students’ interest and motivation for science study and that time for science instruction is critical (NRC, 2007, 2012). A review of some 150 studies of children’s attitudes toward science found that interest in science for some children tends to decline from age 11 onward (Osborne, 2003), and thus elementary grades instruction in science provides a key time for building interest.”

“The current federal requirement of annual reporting on adequate yearly progress in mathematics and reading for all students produces a strong incentive for schools to focus more instructional time on mathematics and reading, which can result in less class time for science, social studies, and other subjects.”

Sandholtz, J. H., & Ringstaff, C. (2014). Inspiring instructional change in elementary school science: The relationship between enhanced self-efficacy and teacher practices. Journal of Science Teacher Education, 25(6), 729-751.

“In contrast to daily instruction in mathematics and reading/language arts, only 20 percent of classes in kindergarten through grade 3 (K-3) receive science instruction on most days, and many classes receive science instruction only a few days a week or during some weeks of the year (Banilower et al., 2013). In the past decade, the amount of instructional time spent on science has declined rather than increased. In 2000, K-3 teachers in the U.S. spent an average of 23 min a day teaching science (Weiss et al., 2001), but in 2012, K-3 teachers spent an average of 19 min on science instruction (Banilower et al., 2013).”

Ness, D., Farenga, S. J., Shah, V., & Garofalo, S. G. (2016). Repositioning science reform efforts: Four practical recommendations from the field. Improving Schools, 1365480216650312.

“Combined, prior science education reform efforts have failed to recognize the impact from the environmental press on learning. More recently, the constraints with which teachers have grappled are increased pressure – resulting, in part, from time constraints for assessments — and an overwhelming focus on mathematics and literacy at the elementary levels (Farenga et al., 2010; Johnson et al., 2008; Ravitch, 2013). As a result of high-stakes testing, too little time is allocated toward the instruction and assessment of the science curriculum. Teachers spend more time on mathematics and reading at the elementary level to fulfill requirements on these exams. As a result, science learning, knowledge, and motivation suffer (Anderson, 2012, p. 119). Suggestions to improve and increase content should be proposed by individuals who have spent a considerable amount of time working or teaching in K to 12 classrooms — a task that might provide a better understanding of the environmental constraints that are found in the K to 12 setting.”

This might give you a little more perspective on why I left the science classroom to work for Galxyz, Inc. Technology is rapidly changing how we educate our children. Blue Apprentice is a fun way to learn science and increases the amount of time students spend focused on STEM — time the students are not receiving in the classroom.

sower_harvest

Expanding Y[our] Horizons

Texas A&M Center for Mathematics and Science Education (CSME) researcher Dr. Craig Wilson has made a career out of science education, outreach and inquiry, inspiring countless school children across this state and nation to learn more about math and science and the many related possibilities through hands-on projects and presentations.

This past Saturday, he made his third consecutive appearance at Expanding Your Horizons, an all-day, workshop-structured conference for 6th grade girls intended to open new doors of interest and opportunity while also encouraging them to stay actively involved in math and science. Beyond making them aware of STEM (science, technology, engineering and mathematics) career opportunities, the annual event also provides the girls with a chance to meet female role models in related fields.

For his part, Craig says he learns as much as he teaches — typical, given the astute observer and encourager that he is. As the ultimate lifelong learner, he has agreed to share his educational observations via the Texas A&M Science blog in hopes of inspiring a broader audience if not horizon.

* ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ *

Texas A&M Center for Mathematics and Science Education (CMSE) research scientist Craig Wilson makes science simple for his "Expanding Your Horizons" audience by outlining his proven two-step method: observe and ask questions. (Credit: Chris Jarvis.)

Texas A&M Center for Mathematics and Science Education (CMSE) research scientist Craig Wilson makes science simple for his Expanding Your Horizons audience by outlining his proven two-step method: observe and ask questions. (Credit: Chris Jarvis.)

Expanding Your Horizons . . . better known by its acronym “EYH.” You might imagine an expansive horizon, the sun sinking in the west with a myriad of colors filling the sky before darkness descends. A lone rider is riding away into that sunset in silhouette. Who is the rider? From our infatuation with Westerns, one assumes it is a cowboy. But why not a cowgirl? Perhaps it is she who has just saved The West? Why not?

EYH is designed to change that mindset from both without and within. The “Your” refers to 6th grade girls. The “Horizons” is not girls seeing a sunset but seeing science as a possible career. The “Expanding” is encouraging and helping them to look up, to look out and to look above and beyond. Just as the Orion spacecraft is looking to one day take humans to Mars, to break the shackles of low-Earth orbit where we have been trapped since 1972, so it is that EYH wants to help girls to go in science where too few girls have gone before.

In addition to being a man of many travels, Wilson boasts as rich a collection of stories as he does related props, including this preserved sample of elephant dung -- a souvenir from time spent in Africa. (Credit: Chris Jarvis.)

In addition to being a man of many travels, Wilson boasts as rich a collection of stories as he does related props, including this preserved sample of elephant dung — a souvenir from time spent in Africa. (Credit: Chris Jarvis.)

According to the Census Bureau’s 2009 American Community Survey, women comprise 48 percent of the U.S. workforce but just 24 percent of workers in STEM (science, technology, engineering and mathematics) fields. Why is that? These girls know nothing of this, although their parents might. There are various theories, but that is unimportant on this particular Saturday. The question to be asked is, “Why have these young girls come today?” I did not ask, but I suspect that it may be because of parental interest, for each has to come with a chaperone. They have to be brought to the College of Science on the Texas A&M University campus, and 153 have made it today. This is good, because this means that their parents see this as important. They are giving their girls options. They are helping to expand their daughters’ horizons.

Today, what do the girls look like? They look interested. They look interesting. They look like potential scientists. I start my first session. They do not sit back and spectate. They participate. This is good, because this is half the battle. The other half is for them to ask questions. This is difficult, because this is not easy for girls or boys. It used to be second nature. It came naturally when they were younger. It is in the nature of scientists to inquire, to observe and to then ask questions about what they have seen. That is the way science is done, and I try to model that and have the girls see that science is much more than book learning. It is about active engagement. It can be fun. But they have to see that it is important and that they can do it as well as if not better than anyone else.

Wilson explained that peanuts are a standard astronaut snack in space because they are compact and provide lots of energy. EYH participants learned how to calculate a peanut's calorific value by setting fire to it, heating a paper cup of water in the process. (Credit: Chris Jarvis.)

Wilson explained that peanuts are a standard astronaut snack in space because they are compact and provide lots of energy. EYH participants learned how to calculate a peanut’s calorific value by setting fire to it, heating a paper cup of water in the process. (Credit: Chris Jarvis.)

I run three sessions. At the end of each, I am encouraged. These girls have what it takes. They have the right stuff to become scientists. Sadly, not enough girls or boys see it that way. We are not getting enough students to pursue science in college. The STEM fields need them. The world needs them.

The world needs answers. She is beset by problems. We need problem solvers to step up and help her. Why not these girls? They have stepped up today. They have given up a Saturday for science. Today, they have expanded their minds. They have seen that they are not alone. Each has taken a small step for a girl but a giant leap towards a scientific horizon that they may have thought was beyond their reach.

This Texas A&M College of Science program is a small step in the right direction. It tells each girl, “You can EYH.” Yours and ours.

Learning

Child’s Play

Yesterday, I caught my co-worker Chris Jarvis — who also happens to be my office suitemate — playing on the job. With a magnetic alphabet set, at that.

Today, he’s at it again, only this time it’s a set of magnetic balls, complete with a magnetized wand.

MagnetWand

Drawing on a theme yet? I am, and I can tell you firsthand that curiosity is attractive. Because I had a few minutes today, I used the first few seconds of one of them to decide that if you can’t beat ’em, then join ’em. Yep, I grabbed the wand and tried it out. So did the next co-worker who had walked in to discuss a project. (And he said these things were low power…)

Interestingly enough, both sets of common children’s toys just happen to be part of the set for Chris’ latest video project -– an in-progress Labors of Lab installment showcasing a Texas A&M Chemistry student whose research involves molecular nanomagnets. Even though I’ve always known Chris to be the type who will go to great lengths to get the job done, I’m amazed. And pleasantly amused. And not just because he’s childless, yet visiting toy stores.

MagnetLetters

When Chris initially joined Texas A&M Science in 2008, I knew he would be a solid writer, based on his background, samples and genuine love for words. During what I like to refer to as his sabbatical year at St. Mary’s University in San Antonio, he got the opportunity to broaden his skill set, adding website creation/maintenance and videography, among other professional nuances. Last year, we got the opportunity to re-hire him, and I can now vouch for the fact that the second time around truly is sweeter. But why take my word for it when you can read his within our news archive and also view roughly a year’s worth of his videos on our YouTube channel?

I know full well what goes into a written story, but I have a newfound appreciation for all that Chris does as a videographer. I’ve worked with some of the best during my career, but I’ve never known one who is a one-stop shop, from storyboarding and script writing, to location scouting and actual shooting, to editing and production, to draft version(s) and ultimately finished product. However, I do know that I have the luxury of resting easy in the knowledge that any project I assign to Chris or that he takes on himself is in good hands, largely without me lifting a finger nor checking up on a single detail beyond our initial conversation.

Although most of this magic happens less than 20 yards away from me, I never fully got the picture until last month, when Chris produced what I think is his best work yet: an overview piece for this year’s National Science Foundation-funded Summer Research Experiences for Undergraduates (REU) Program. Six different programs across the college; one university-wide supplement; at least one coordinator per program; countless student participants; multiple locations, shoots and interviews during the course of the 10-week program; and hundreds of clips, all funneled into a single cohesive, comprehensive, well-told story. It’s definitely an art (an undervalued one, in my opinion), and I am in awe. Feel free to appreciate with me below and also check out a few bonus clips featured with the news summary:

As his co-worker and trenchmate, I love that Chris loves what he does and that he continues to come up with new and appealing ways to tell a visual story. As his friend, I love that Chris is on my team and that he continues to find joy in his work, which is so much more than a job to him, just as it is to me.

Most of us are familiar with some version of the old adage, “Work to live, not live to work.” Based on what I’ve seen, Chris is well on his way to having this one down to a science.

By all means, play on, and always remember to share — toys and talents.

Turning the Tide

Anyone who knows Tim Scott ’89 or has heard him present to general audiences (particularly current or prospective students as associate dean for undergraduate programs in the Texas A&M College of Science) knows that one of his go-to points of inspirational reference is the starfish story, a classic tale by Loren Eiseley about motivation, intrinsic reward and end results.

As many times as I’ve heard him tell the story, I don’t recall ever hearing nor even pondering the starfish’s perspective. Until earlier this month, when Scott forwarded the following email from a former student, Alvin Lira ’13, a 2014 Texas A&M bioenvironmental sciences graduate and current Legislative Support Specialist with the Texas A&M University System Office of Federal Relations in Washington, D.C.

Lira has agreed to share his words via the Texas A&M Science blog in hopes of inspiring other students who may find themselves in his 2012 shoes, not to mention possible benefit from knowing there is light at the end of what at present might appear to be a mighty dark tunnel — and that there are caring people like Tim Scott who are more than happy to help them visualize it even when they might not be able to see it for themselves.

* ~ * ~ * ~ * ~ *

AlvinLira_LinkedInHello, Dr. Scott,

Not too long ago, I was a biology student at Texas A&M. In 2012 I met you under very unfortunate circumstances due to the academic troubles I had encountered during my first few semesters at TAMU. I was struggling in most of my classes due to a variety of personal issues, and I was at risk of being placed under academic probation. You asked me to meet with you, and I remember thinking about transferring to a different university and changing my course of study before our meeting. While I was in your office, you dissuaded me from this decision and asked me to find a major I would enjoy at TAMU. You told me you would do everything you could to help me get into the department I had chosen in order to finish my studies. You mentioned how many first-generation students from the Rio Grande Valley, like myself, struggle early on and eventually leave TAMU, and you did not want to see someone else miss out on the education that A&M can provide. Soon after, you came through on your end of the deal, and you helped me get into the bioenvironmental sciences degree program.

It was the first time at TAMU that someone had taken the time to truly help and guide me through my struggles. Coming from my background to TAMU, I never really had someone to aid me in any education-related issue. Having someone who put time and effort to help me succeed completely changed my mindset. After speaking with you and seeing how helpful you were, I felt more comfortable reaching out to others for advice and guidance. Within two years after our conversation, I had changed my major to bioenvironmental sciences, learned how to study and find resources, began mentoring at-risk students, got three internships in a row (one of those in D.C. working on Agriculture & Natural Resources Policy), and graduated from Texas A&M (I ended my last three semesters above a 3.25 GPA and my last two semesters above a 3.5 GPA)! After graduating, I went on to work for a state agency for a few months, and I am now in D.C. working for the Texas A&M System’s Office of Federal Relations.

I cannot tell you how much those 20 minutes with you influenced me. You definitely played a huge role in my decision to stay at Texas A&M, and the opportunities that were given to me at TAMU resulted from my decision to stay. I may have not graduated with the highest GPA in my class as a result of my early struggles, but I took advantage of every opportunity given to me afterward, and I did very well in bioenvironmental sciences. I wrote so much, but I simply and truly just wanted to say thank you. I hope that you encourage other first-generation students to pursue their dreams and to never give up. Sometimes it just takes one person to believe in you to change things around. I hope you are doing well and continuing to impact student’s lives. Take care.

Sincerely,
Alvin Lira

* ~ * ~ * ~ * ~ *

Of course, anyone who knows Tim Scott also knows he’s as gracious and geunine as he is generous. He conservatively estimates he answers at least 100 emails from students each day, and his response below to Alvin (spoiler alert: it includes a starfish reference) speaks volumes about a lot more than undergraduate education or potential career advice.

* ~ * ~ * ~ * ~ *

Scott_TAlvin,

What a tremendous gift you have given me today! I am blessed beyond measure. One of my favorite stories is the man walking on the beach throwing washed-up starfish back in the ocean (http://www.esc16.net/users/0020/FACES/Starfish%20Story.pdf). I feel like that is my calling in life. Thank goodness I had the good sense to reach out to you to help you understand your full potential. As we discussed, you went on, graduated and are accomplishing the dream. Your job now is to pay it forward, and it sounds like you are doing just that. Also know how much you brought to the table. You were open, accepting, trusting and worked hard. With those attributes, you can do anything you want to do. Thank you for your note today and for not giving up. I am in DC from time to time related to grants, and maybe we can connect when I am there.

Warm Regards,
Tim Scott

* ~ * ~ * ~ * ~ *

There are perhaps few greater potentially valuable efforts than making and taking the time — Tim Scott back then to help yet another individual in need, and Alvin Lira present-day to prove that investment (Scott’s and his) paid off. As does saying thank you. I bet the starfish would agree.

WilliamJames_01

All In a Day’s Work

To know Texas A&M Center for Mathematics and Science Education (CMSE) researcher Dr. Craig Wilson is to love him — if not for his genuine passion and absolute gift for scientific knowledge, inquiry and outreach, then for his entertaining stories in pursuit of the aforementioned. Here’s one that he shared last week with several people in the Texas A&M Science Dean’s Office, most of whom know a thing or two about spending time in close quarters with both Craig and his cockroaches. Let’s just say it’s better to be hissing than missing!

* ~ * ~ * ~ * ~ *

The university media specialist (by his own admission a non-scientist) was spending half a day with us to learn and write about the Future Scientists Program. He had been taking all manner of photos, including many of the teachers using the digital microscopes in the classroom that had been set aside for our use. He then accepted an invitation to join us outside studying in the wildflower meadow, where I had the teachers collect a variety of flowers with the goal to examine different types of pollen.

No sooner had he joined us than he left us, taking off running back to the road like a scalded cat screaming, “Snake!” At that point, bodies bolted in all directions, while I headed to the area where the snake might have tried to make its own escape. I was able to secure a four-foot rat snake (Elaphe obsolete lindheimeri) with one foot and grasped it behind the head. If possible, it seemed more agitated than the erstwhile cameraman.

This seemed like a teachable moment, so I carried my prize back to the classroom for further study and looked for a suitable container. In a side room, I found the old terrarium inhabited by 40 Giant Madagascar Hissing Cockroaches (Gramphadorhina portentosa). Still holding the snake firmly in one hand, I managed to remove the lid … but where to put the cockroaches? Out of the corner of my eye, I saw a waste bin with a liner, so I dumped the cockroaches in there for later use and placed the snake in the terrarium. At that point, the by-now-somewhat-calmer-and-mollified photographer steeled himself and took photos of his incarcerated nemesis.

Madagascar Giant Hissing Cockroaches, properly secured and suitable for transport to an educational environment near you! Wilson notes that the white one pictured here is not an albino; rather, she has just emerged from her exoskeleton and therefore is soft and white. From here, she will hide, swell up and darken in color. He says they do this whenever they have grown too large for their current exoskeleton.

Madagascar Giant Hissing Cockroaches, properly secured and suitable for transport to an educational environment near you! Craig notes that the white one pictured here is not an albino; rather, she has just emerged from her exoskeleton and therefore is soft and white. From here, she will hide, swell up and darken in color. He says they do this whenever they have grown too large for their current exoskeleton.

An hour later, I was ready for the teachers to study the cockroaches, so I went to retrieve them. I was startled to see an empty waste bin! A quick inquiry revealed that a janitor had been seen in the building. Quickly putting two and two together, three of us (not four!) rushed out and around to the back of the building and began dumpster diving. The fifth bag retrieved and opened indeed was holding the missing cockroaches. One should avoid anthropomorphism if at all possible, but the insects appeared none the worse for their experience, if not perhaps chagrinned that they had not made good on their escape to cockroach nirvana at the landfill. I cannot say the same for my co-dumpster divers or for our fearful media specialist.

Each year, I am invited by Texas Farm Bureau to present at this, the Agriculture in the Classroom (AITC) Summer Agricultural Institute, held in 2015 at Tarleton State University in Stephenville, Texas. Each year, something notable happens, usually on the good side of bad. For example, I always take the teachers to walk over and study the turf grass experiments nearby. While there, I also collect lily flowers (Lilium) for them to study, as there is a large bed set aside to grow them that rivals Joseph’s Coat of Many Colors, such is the proliferation of shapes and colors of the large blooms.

However, this year was different. This year, the research scientist unexpectedly showed up and showed concern at this uninvited presence. Naturally, I marched straight up to him and asked him to explain his research. He was somewhat taken aback, given that he is not a people person. When he kindly invited them to help themselves to lily flowers, I had to admit that I had already helped myself on their behalves. My transgressions are always in the name of science.

For many, this would be a very different day’s work, but for me, it was all in a day’s work.

Wilson routinely brings his cockroaches and other insects to K-12 classrooms and educational outreach events (in this case, Expanding Your Horizons) held at Texas A&M and other universities to allow kids of all ages to get up close and personal with their environment.

Craig routinely brings his cockroaches and other insects to K-12 classrooms and educational outreach events (in this case, Expanding Your Horizons) held at Texas A&M and other universities to allow kids of all ages to get up close and personal with their environment.

I Am Just a Teacher

The following is a guest post from Patricia Oliver ’11, a 10th grade chemistry and 9th grade Advancement Via Individual Determination (AVID) teacher at West Mesquite High School in Mesquite, Texas. A 2011 graduate of Texas A&M University and a member of the aggieTEACH Program, Oliver earned both her bachelor’s of science degree in university studies (2011) and a master’s of education degree in education curriculum and instruction (2012) at Texas A&M. Earlier this month, she was honored with the 2015 Texas Instruments Foundation Innovation in STEM Teaching Award — a prestigious honor that includes a $5,000 personal award as well as $5,000 for Oliver to spend on her classroom.

Patricia Oliver '11 (right), accumulating extra classroom experience as a Texas A&M undergraduate and aggieTEACH participant. The program, a collaboration between the College of Science and the College of Education and Human Development, has helped Texas A&M lead the State of Texas in number of university-certified math and science teachers produced each year for nearly a decade. (Credit: Robb Kendrick/Texas A&M Foundation.)

Patricia Oliver ’11 (right), accumulating extra classroom experience as a Texas A&M undergraduate and aggieTEACH participant. The program, a collaboration between the College of Science and the College of Education and Human Development, has helped Texas A&M lead the State of Texas in number of university-certified math and science teachers produced each year for nearly a decade. (Credit: Robb Kendrick/Texas A&M Foundation.)

* ~ * ~ * ~ * ~ *

I am a just teacher. Every year, there comes a point when I contemplate that statement. When people ask me what I do, I automatically answer, “I am a teacher.” And to any non-teacher, that translates to: I talk to students, I grade papers and then I go home. Anyone can do that.

There are many examples of this that all teachers can relate to. One that springs to mind is when a man I was talking to said, “Oh! So you just went to college to get your Mrs. degree?” after hearing I was a teacher. Or it’s commonly assumed that I teach elementary. People are generally shocked when I tell them I teach high school chemistry, often responding with, “Wow! You must be smart, then!” Does that mean if I taught anything else, I am not smart?

The title of “teacher” doesn’t scream intelligence to non-teachers. It is sad that society views the teaching profession in that way. It makes every teacher feel inferior. People’s views of my profession make me second-guess myself all the time. I never think I’m working hard enough. Doing enough. Providing enough. It’s stupid, isn’t it?

This year, I was awarded the STEM innovation teaching award. I had students come hug me and tell me that I was the reason they walked across the stage. But even in those moments of validation, I think I’m not deserving. I feel guilty that I’m being praised for a job well done, because I don’t think I did anything amazing. It’s just my job. I am just a teacher.

2011 Texas A&M University graduate and West Mesquite High School science teacher Patricia Oliver '11 with her 2015 Texas Instruments Foundation Innovation in STEM Teaching Award. (Credit: Leah Felty.)

2011 Texas A&M University graduate and West Mesquite High School science teacher Patricia Oliver ’11 with her 2015 Texas Instruments Foundation Innovation in STEM Teaching Award. (Credit: Leah Felty.)

Today, while sitting at lunch at a conference with 2,000 other teachers during my vacation time, I received a text from a former student who recently graduated:

“Ms. Oliver, I would like to thank you for everything you have done for me! You’ve always been there when I had a problem or I needed somebody to talk to. You’ve impacted my life for the best, and I can’t thank you enough for everything! You’ve looked out for me and guided me in the right path. I love you so much, and I know you might hear this from a lot of students, but I honestly mean it. You’re like a mother, sister, best friend and mentor to me. I honestly don’t know where I would be without your guidance. I’m honestly going to miss you so much, but I’ll still, hopefully, go to feed the homeless. Thank you, Ms. Oliver, for everything! I love you from the bottom of my heart! You were and forever will be my favorite teacher.”

The message was sent completely out the blue. I immediately started to cry. When I asked why she sent the text, she responded, “I was just thinking about my high school years and, well, you were in most of it.” My first thought was, “That’s ridiculous! I didn’t pay enough attention to you! I couldn’t possibly mean that much to you.” I am just a teacher.

Then I realized something … never once did she talk about all the chemistry she learned! She didn’t mention all the papers I graded or how the immediate feedback I gave her was so influential! Funny, isn’t it?

Patricia Oliver, showing off her hopefully contagious love for chemistry in her West Mesquite High School classroom. (Credit: Patricia Oliver.)

Patricia Oliver, showing off her hopefully contagious love for chemistry in her West Mesquite High School classroom. (Credit: Patricia Oliver.)

I am more than just a teacher. Like my student said, I am a “mother, sister, best friend and mentor.” I am a counselor, sounding board, advice-giver, mediator and thought-provoker. I change lives.

I am so much more than a teacher, and I am proud.

I could go on forever. But I’ll leave you with my favorite quote:

“I’ve learned that people will forget what you said, people will forget what you did, but people will never forget how you made them feel.” — Maya Angelou

When Research Gets Wild

Scientists often go to great lengths for their research, but sometimes it gets downright risky.

Grace Smarsh ’14 is a Ph.D. candidate who has been working in the lab of Dr. Michael Smotherman, Texas A&M University biologist and a leading expert on bat behavior. Grace spent a total of 17 months during a three-year period in Tanzania studying the songs of its native heart-nosed bat to probe how their vocal ranges adapt to different social interactions. While on her quest to observe the winged creatures, Grace had to learn to coexist with the land-dwellers of the African bush, from the tiniest of insects to some pretty large cats.

Here’s Grace, discussing some of her encounters and how she coped with her rank in the animal kingdom.

And the Beat Goes On

One of my favorite questions beyond “Why Texas A&M?” for the many faculty, researchers and students I encounter in the course of this job is, “Why science?”

Texas A&M biologist Deborah Bell-Pedersen recently scratched the surface of this topic for the latest issue of Spirit magazine. She then agreed to take it one step further and more personal for our blog, delving into the earliest motivations behind her 30-plus-year career in higher education and fundamental research in circadian and fungal biology.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus's genes, which led to major insights into its biological clock.

A member of the Texas A&M Biology faculty since 1997, Deborah Bell-Pedersen is an internationally recognized leader in the fields of circadian and fungal biology. In addition to helping to sequence the genome for Neurospora crassa (bread mold), her laboratory made the first DNA chips containing the fungus’s genes, which led to major insights into its biological clock.

* ~ * ~ * ~ * ~ *

My path to becoming a research scientist was not a straightforward one. Although science and math were always my favorite classes as a student, I wanted to work to save the animals on our planet through conservation efforts and to find ways to limit our negative impact on our environment.

I grew up in a small town in upstate New York that few people have ever heard of. In this small community, I could easily see how our growing population and lack of concern for building in new areas was negatively affecting local wildlife populations. So in my first two years of college, I majored in wildlife conservation.

It wasn’t long before I became concerned that I was not really learning what I thought I needed to in order to achieve my goal. I figured to really have an influence on conservation efforts, I would need a solid understanding of the biology and ecology of the organisms I so deeply wanted to protect. That’s when I began studying biology.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them  that drew her into biology as a possible career.

Beyond her basic curiosity about bench research, Bell-Pedersen says it was her love of animals and strong desire to protect them that drew her into biology as a possible career.

In my junior year, a friend who was working in a research lab would tell me all about the experiments he was doing to uncover the mechanisms for how cells divide. This caught my attention because I assumed that scientists already knew nearly everything about cell division. While our textbooks made it seem like all of the problems had been solved, we really didn’t know much about what controls cell division. That’s when I decided to try my hand at research, and during my senior year I carried out a research project in cell biology. I found it incredibly exciting to be designing my own experiments to get answers to problems that no one had ever previously studied. On top of the thrill of basic discovery, the research also had important implications in animal and human health.

I was hooked and continued my journey toward a career in research and teaching. Along the way, I have found joy from continuing to make basic discoveries in biology, some of which now appear in textbooks and have potential for the development of new approaches to treat cancer.

As a career, I would say there is nothing better. The research we are doing will have a major impact on society; I learn something new every day; I interact with fascinating people from all different cultures; I travel all over the world to speak about our work at meetings; but probably the most rewarding aspect is my role in training students to be our next generation of research scientists, many of whom will make important new discoveries themselves.

Neurospora crassa samples growing in Bell-Pedersen's Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Neurospora crassa samples growing in Bell-Pedersen’s Center for Biological Clocks Research laboratory. The bands in the tubes indicate the daily rhythm of spore formation in the fungus.

Research scientists do work long hours, but for me, doing experiments and analyzing data is fun and more like a favorite hobby than actually working. Despite these long hours, I still find time to maintain my childhood interest in animals and pretty much have my own zoo — one rescued dog, one cat, two miniature donkeys and one horse. I take riding lessons twice a week on my horse, Tea and Crumpets, to learn dressage.

In addition, I have also always enjoyed music. People are always surprised when they come to my office and hear anything from opera to hip-hop blaring from my speakers. I do play the piano a little and in recent years, I have started learning to play the violin.

In many ways, I think playing music is a lot like conducting research. Both are a lot of fun, require creativity and concentration, and have the potential for long-lasting impact on society.

* ~ * ~ * ~ * ~ *

Yeah, Bell-Pedersen is onto something here, and go figure that there’s actual science behind it, too. Watch it, then get to work and/or go play!