Improving STEM Education: It’s About Time

The following is a guest post from Robert Wilson ’89, a former 3rd grade science teacher at Bryan Independent School District’s Blue Ribbon-recognized Johnson Elementary School. Wilson, a Ph.D. candidate in education curriculum and instruction at Texas A&M and longtime science educator, currently is Director of STEM Classroom Products for Galxyz’s Blue Apprentice, a new app that is putting the interactive adventure into elementary science and making international headlines, including for a recent partnership with Popular Science to create an entire line of game-based K6 science resources.

Although Wilson may no longer be head of the class at Johnson, his heart clearly remains with his students and singularly invested in their best interests, particularly with regard to the S in STEM.



* ~ * ~ * ~ * ~ *

Sometimes we put too much faith in a system without understanding all that is involved. I support our teachers and administrators and respect the job that they do for our children every day. However, the legislative constraints in which they work are having a negative impact on our students’ STEM (science, technology, engineering and mathematics) education. If we are to improve STEM education as a nation, we have to take a long hard look at what is happening within classrooms at the elementary level concerning the amount of time that teachers are teaching science, along with topic selection.

Do you have a child in elementary school? How much science instructional time are they receiving?


Food for thought follows, with accompanying citations:

Blank, R. K. (2013). Science instructional time is declining in elementary schools: What are the implications for student achievement and closing the gap? Science Education, 97(6), 830-847.

“The recommendations for improvement of science education from the NRC indicate that the elementary years are an important time to capture students’ interest and motivation for science study and that time for science instruction is critical (NRC, 2007, 2012). A review of some 150 studies of children’s attitudes toward science found that interest in science for some children tends to decline from age 11 onward (Osborne, 2003), and thus elementary grades instruction in science provides a key time for building interest.”

“The current federal requirement of annual reporting on adequate yearly progress in mathematics and reading for all students produces a strong incentive for schools to focus more instructional time on mathematics and reading, which can result in less class time for science, social studies, and other subjects.”

Sandholtz, J. H., & Ringstaff, C. (2014). Inspiring instructional change in elementary school science: The relationship between enhanced self-efficacy and teacher practices. Journal of Science Teacher Education, 25(6), 729-751.

“In contrast to daily instruction in mathematics and reading/language arts, only 20 percent of classes in kindergarten through grade 3 (K-3) receive science instruction on most days, and many classes receive science instruction only a few days a week or during some weeks of the year (Banilower et al., 2013). In the past decade, the amount of instructional time spent on science has declined rather than increased. In 2000, K-3 teachers in the U.S. spent an average of 23 min a day teaching science (Weiss et al., 2001), but in 2012, K-3 teachers spent an average of 19 min on science instruction (Banilower et al., 2013).”

Ness, D., Farenga, S. J., Shah, V., & Garofalo, S. G. (2016). Repositioning science reform efforts: Four practical recommendations from the field. Improving Schools, 1365480216650312.

“Combined, prior science education reform efforts have failed to recognize the impact from the environmental press on learning. More recently, the constraints with which teachers have grappled are increased pressure – resulting, in part, from time constraints for assessments — and an overwhelming focus on mathematics and literacy at the elementary levels (Farenga et al., 2010; Johnson et al., 2008; Ravitch, 2013). As a result of high-stakes testing, too little time is allocated toward the instruction and assessment of the science curriculum. Teachers spend more time on mathematics and reading at the elementary level to fulfill requirements on these exams. As a result, science learning, knowledge, and motivation suffer (Anderson, 2012, p. 119). Suggestions to improve and increase content should be proposed by individuals who have spent a considerable amount of time working or teaching in K to 12 classrooms — a task that might provide a better understanding of the environmental constraints that are found in the K to 12 setting.”

This might give you a little more perspective on why I left the science classroom to work for Galxyz, Inc. Technology is rapidly changing how we educate our children. Blue Apprentice is a fun way to learn science and increases the amount of time students spend focused on STEM — time the students are not receiving in the classroom.