Another One Bites the Dust

News this past March out of Harvard University’s Cosmic Microwave Background (CMB) Group detailing discovery of the possible evidence for inflation in the early universe is taking a universal beating as of late for failing to properly account for dust, perhaps in the group’s haste to leave its competition in it.

Their findings using the South Pole-based BICEP2 telescope hinge on the detection of gravitational waves, which cosmologists have long predicted would produce a specific type of polarization. They were correct in more ways than one.

BICEP2 telescope at South Pole. (Credit: Harvard CMB Group)

BICEP2 telescope at South Pole. (Credit: Harvard CMB Group)


I remember seeing the media advisory on the American Astronomical Society (AAS) listserv announcing the Monday morning press conference at Harvard’s Smithsonian Center for Astrophysics — an unusual occurrence in my admittedly relatively young experience in science media circles, outside of announcing a Nobel Prize. Given that Harvard is a fellow partner in the Giant Magellan Telescope, I emailed Texas A&M astronomer Nick Suntzeff in hopes that he would know what could justify such a media frenzy.

He did. And per his usual, he had a strong, succinct opinion on both the breakthrough and the group’s manner of conveying it to the world: “All this drama — science did not used to be like this.”

Months before the latest round of back-pedaling in the media, Houston Chronicle science writer Eric Berger had been among those sounding the alarm regarding the damage done to science’s credibility and public image. I emailed Nick then for his counsel, just as I did when I saw Dennis Overbye’s New York Times feature and then another in Nature on back-to-back days earlier this month. Nick didn’t mince words. Nor should he, in my opinion. Then again, we’re both fans of implied duty and inherent responsibility.

More importantly, he offered some great comparative insight on how he and the High-Z Supernova Search Team handled their own early stage Nobel Prize-winning research that ended up proving the universe’s expansion is actually accelerating, thanks to a mysterious substance they co-discovered: dark energy.

“When we discovered dark energy, all we did was to find that the distant supernovae were too faint in comparison to what was expected,” Nick wrote. “We immediately worried that there was some sort of dust in the universe we did not know about that could cause this. We gave a simple argument as to why we felt this dust could not be causing the effect. Dust makes stuff look red — look at something through a forest fire, and it appears red. Same in the universe. We did not see this reddening.

“Also, if there was dust in the universe that we did not know about, more distant stuff should appear fainter because the light has to travel through more dust. This latter effect was difficult to measure, but we did show it was unlikely. All this was in our papers. What we did not do was to say that we have considered dust as causing the faintness of distant supernovae and then not tell the reader why we concluded this. That is what the BICEP2 paper did, and it confused us all as to why they did this.”

Planck satellite map of the cosmic microwave background -- the radiation ripples left over from the Big Bang. (Credit: NASA/European Space Agency)

Planck satellite map of the cosmic microwave background — the radiation ripples left over from the Big Bang. (Credit: NASA/European Space Agency)


If astrophysicists the likes of Nick Suntzeff are confused, one can imagine where this leaves the public, both in terms of understanding this “discovery” and in their general impression of science.

First, do no harm.

* ~ * ~ * ~ * ~ *

The BICEP2 kerfuffle (have always wanted to use that word!) reminds me of a previous occasion when Nick flexed his writing muscles in the name of responsible science. The result: a memorable 2011 guest post for the Last Word On Nothing blog in which he simultaneously describes and decries how science is done these days.

Game-Changing Gambles

The Giant Magellan Telescope picked up Texas-sized momentum last month with a $50 million pledge from the University of Texas. Although it wasn’t our announcement, I found myself nearly as excited as I was on July 22, 2011, when I received the following email from Texas A&M astronomer Nick Suntzeff:

Shana, I don’t know if we can announce this yet, but this is a huge achievement! Ask Darren about when this can be made news.

The following news, relayed by Darren DePoy, from the latest GMT Board meeting included the following:

“The GMT1 primary mirror is now at 50nm rms figure. The goal is ~30nm (I think), but even at this level it is the best figured/polished large aspheric optic ever made and probably could be used as is. This is extremely good news!”

This is fantastic! The technology developed by Roger Angel has worked, and we now have a green light to start the other mirrors.

This made my day!

cheers nick

(Credit: Giant Magellan Telescope Organization.)

(Credit: Giant Magellan Telescope Organization.)

I’m definitely no scientist, but I’ve always found the GMT’s design beautifully intriguing and absolutely genius because of its originality and flexibility. The scientists behind it had the forethought (no doubt because they knew just how hard a financial sell it would be) to make it operational in stages, allowing for results (pretty sweet ones) even if it never raises enough funds to be fully completed. The fourth mirror represents that critical stage — the turning point. With UT’s pledge, it’s as good as cast, ensuring that, even if the worst comes to pass, the world at least will have more than leftover parts and a shell of a dream (see Texas Superconducting Super Collider) to show for all the hard work and previous investment.

In January, the GMT cleared two major hurdles, passing both its detailed design review and being approved to enter the construction phase. Of course, approval is one thing; having the financing to do so is quite another.

They say timing is everything, and Texas’ bold move couldn’t have happened at a better one. I can’t help but think of George P. Mitchell ’40 and how happy he would be to finally see the day when his home state got off the dime (figuratively and literally), following his own $33.25 million lead in that vital international leadership regard as he saw it.

Mitchell believed in the GMT when few else beyond the project’s originators did. Thank goodness for people like him — an individual not only with the financial wherewithal but also the vision to see the GMT’s potential just as clearly as the scientists behind it. Truly remarkable and heady stuff. And all the more fitting that it’s a pledge from one of his home institutions that likely puts it over the construction hump. Whoop!

So many said it would never get this far. And that such a risky design relying on not one but seven parabolic mirrors that put the double-capital Ps in precision polishing (in addition to being unprecedentedly huge) would never work.

I think as the GMT enters construction, its marvel will become more apparent. It’s hard to fundraise in the abstract, long-term, but once the project’s partners have a tangible object and definable, measurable progress underway, it will be far easier to visualize the possibility-laden bandwagon onto which these institutions are imploring donors as well as global science to jump.

Oh, and that first mirror and all its precision-polishing-representing-pioneering-scientific-achievement glory that Dr. Suntzeff was so ecstatic about in his email? It’s named for Mr. Mitchell. Oh, the places it will go and things it will help see!

The Giant Magellan Telescope's first two mirrors, pictured last August within the University of Arizona's Steward Mirror Lab. Known as GMT1 and GMT2, they are named for George P. and Cynthia Woods Mitchell, respectively. GMT1/"George" (left) is packaged and ready to head to Chile -- a feat of logistics and exercise in trust by any stretch! Each of the GMT's seven mirrors will travel by truck down Interstate 10 to a port in California, then via ship to a port near Las Campanas, Chile, and finally via another truck up a mountain in the Atacama Desert near the existing twin Magellan telescopes. By comparison, the mirrors for those are 6.5 meters in diameter, while each GMT mirror measures 8.4 meters.

The Giant Magellan Telescope’s first two mirrors, pictured last August within the University of Arizona’s Steward Mirror Lab. Known as GMT1 and GMT2, they are named for George P. and Cynthia Woods Mitchell, respectively. GMT1/”George” (left) is packaged and ready to head to Chile — a feat of logistics and exercise in trust by any stretch! Each of the GMT’s seven mirrors will travel by truck down Interstate 10 to a port in California, then via ship to a port near Las Campanas, Chile, and finally via another truck up a mountain in the Atacama Desert near the existing twin Magellan telescopes. By comparison, the mirrors for those are 6.5 meters in diameter, while each GMT mirror measures 8.4 meters. (Credit: Joe Newton.)

Of Forests, Trees and Maroon Roses

Ever find yourself so focused on the little things wrong that you miss the big picture of all that’s right? Easy to do when the day-to-day begins to rule not only the day, but also the week, then the month, then the next month, and so on. Sometimes it takes conscious effort to break this vicious cycle, but thankfully, there’s one routine assignment each year in the late spring/early summer that guarantees I stop and smell the maroon roses (so to speak) representative of Texas A&M Science. And boy, were they particularly fragrant in 2013. Or 2012, I should say.

Each year Texas A&M Science Communications compiles an annual report cataloguing our teaching, research and service efforts across all departments for the previous calendar year. Collectively and per individual tenured/tenure-track faculty member. It’s no small endeavor, with the end result being as weighty as the three-ring binder in which it arrives. One of the first pages within said binder is a foreword from Dean of Science Joe Newton summarizing the highest of the year’s high points — my primary contribution to the larger effort, which mostly involves pinning Dr. Newton down and making him focus on the rear-view mirror even as he’s engrossed in all levels of forward-looking responsibilities as our designated driver. Typically each department head also provides a foreword for each respective unit. All in all, it’s pretty impressive information that definitely goes against the Aggie tradition of humility (arguably the eighth core value!) but speaks volumes about what we value as a college and across the fundamental sciences and professions we represent.

Rather than relegate that summary to the binder for another year, I want to share it here so that you, too, can see it’s been a good year for the roses. Congratulations, Texas A&M Science, but your work here isn’t done. We’ll get more binders ordered…

FOREWORD FROM THE DEAN (2012 Annual Report)

As dean of the College of Science at Texas A&M University, it is my obligation and privilege each fall to take stock of our progress toward our three-part university mission — teaching, research, and service — and to reevaluate our collective commitment to ongoing excellence in all respective phases.

I am pleased to report that the Texas A&M College of Science continues to deliver on its unspoken yet inherent promise to advance discovery and solve real-world problems. In the past year alone, our scientific ingenuity has resulted in hundreds of top-notch graduates and more than $56 million in sponsored research projects that create new knowledge and drive economies around the world. Each year despite all economic indicators to the contrary, those awards steadily continue to increase, both in amount and stature, as testament to the strength of our programs and overall reputation for excellence.

Beyond research funding, the past year marked another major milestone in external fundraising — a landmark $20 million legacy gift by George P. Mitchell ’40 and the Cynthia and George Mitchell Foundation toward the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy that followed their $25 million gift (half of which was credited to Texas A&M) to the Giant Magellan Telescope in 2011.

Our individual teaching, research, and service highlights in 2012 were many and magnified, highlighted primarily by big discoveries and major research-related awards in each department. Two faculty, physicists Marlan Scully and Alexander Finkelstein, were honored for lifetime research achievement — Scully with the Optical Society’s highest award, the Ives Medal/Quinn Prize, and Finkelstein with a Humboldt Research Award. Chemist Oleg Ozerov was recognized with The Welch Foundation’s Norman Hackerman Award for Chemical Research, while fellow chemist David Russell earned the American Chemical Society’s Field/Franklin Award for Outstanding Achievement in Mass Spectrometry. Three faculty received National Science Foundation CAREER Awards (Helmut Katzgraber, Wenshe Liu, Grigoris Paouris),

In other notable accolades, Chemistry’s Sherry Yennello was recognized as a Fellow of the American Association for the Advancement of Science (AAAS), while Karen Wooley was named 2012-14 chair of the Nanotechnology Study Section within the National Institutes of Health Center for Scientific Review. Mathematics celebrated 11 inaugural American Mathematical Society Fellows (Harold Boas, Ronald DeVore, Ronald Douglas, Rostislav Grigorchuk, William Johnson, Peter Kuchment, Gilles Pisier, Frank Sottile, Emil Straube, Clarence Wilkerson, and Guoling Yu, who was named the inaugural holder of the Thomas W. Powell Chair in Mathematics), as well as its first Texas A&M Presidential Professor for Teaching Excellence (Boas).

 In global research breakthroughs, our high-energy physicists were part of international experiments at the Large Hadron Collider and Fermilab that confirmed preliminary proof for what is believed to be the Higgs boson particle. The Dark Energy Camera, for which astronomer Darren DePoy serves as the project scientist, captured and recorded its first images high atop the Blanco Telescope in Chile. First blast occurred at nearby Las Campanas Peak, marking the beginning of site preparation for the Giant Magellan Telescope, which also celebrated successful completion of its first mirror. Chemist Joe Zhou received his second Department of Energy grant in as many years to develop more efficient natural gas storage tanks for passenger vehicles. Our faculty (Alexander Finkelstein, Christian Hilty, Oleg Ozerov, Jairo Sinova, Clifford Spiegelman, Renyi Zhang) also are involved in six of the eight joint research projects encompassed in a $1.5 million campus-wide collaboration with Israel’s Weizmann Institute of Science.

 On a campus achievement front, Physics and Astronomy’s David Lee was selected as a university distinguished professor, Texas A&M’s highest academic honor for faculty. Biologist Michael Benedik was named Dean of Faculties, and a record-tying six faculty received university-level Texas A&M Association of Former Students Distinguished Achievement Awards — Tatiana Erukhimova and Sherry Yennello in Teaching, Kim Dunbar and Nicholas Suntzeff in Research, Marcetta Darensbourg in Graduate Mentoring, and Edward Fry in Administration. Physicists Olga Kocharovskaya and David Toback earned Sigma Xi Distinguished Scientist and Outstanding Science Communicator Awards, respectively. Toback and chemist David Bergbreiter also earned their second University Professorships for Undergraduate Teaching Excellence (UPUTE) appointments. Mathematics’ Sue Geller received the Texas A&M Honors and Undergraduate Research Director’s Award, while chemist Kim Dunbar earned the inaugural Texas A&M Women Former Students’ Network Eminent Scholar Award.

Students shared equally in the accomplishment spotlight, none brighter than Mathematics’ Tanner Wilson, who earned one of two Brown-Rudder Awards presented each year at spring commencement to the top Texas A&M seniors. Allyson Martinez (Biology) and Meng Gao (Physics and Astronomy) earned Phil Gramm Doctoral Fellowships, while Charles Zheng (Mathematics) received an NSF Graduate Research Fellowship. Mathematics major Frances Withrow earned a Pi Mu Epsilon/Society for Industrial and Applied Mathematics (SIAM) Award at MathFest 2012, and physics major Daniel Freeman received the 2012 Outstanding Thesis Award for Undergraduate Research Scholars from Texas A&M Honors. In addition, four graduate students merited Distinguished Graduate Student Awards for their exemplary efforts in research, teaching and mentoring (Michael Grubb and Casey Wade, Chemistry, doctoral research; Wenlong Yang, Physics and Astronomy, master’s research; Scott Crawford, Statistics, doctoral teaching).

One of our most cherished former students and longtime External Advisory & Development Council champions, the late Dr. Robert V. Walker ’45, received a Texas A&M Distinguished Alumnus Award, while Statistics’ Jerry Oglesby ’71 and our own chemist Daniel Romo ’86 were inducted into the college’s Academy of Distinguished Former Students.

From an educational outreach perspective, Chemistry hosted the 25th edition of its award-winning Chemistry Open House and Science Exploration Gallery, while record crowds attended both the Math MiniFair and Physics & Engineering Festival. Dozens of women participated in a three-day, national physics conference hosted by our Educational Outreach and Women’s Programs Office, while the Mitchell Institute unveiled the Physics Enhancement Program (MIPEP) to improve high school physics teaching. The Texas A&M Math Circle also was born to engage and encourage bright middle school students, while Houston-based Halliburton put its name and grant support behind a new “Mathematics All Around Us” outreach program. The Greater Texas Foundation committed $50,000 to round out a $150,000 challenge grant started by another big name in Texas industry, Texas Instruments, to benefit aggieTEACH. Finally our Center for Mathematics and Science Education (CMSE) is helping to lead a new $10 million science and technology educational outreach program funded by NASA.

Last but certainly not least, longtime Dean’s Office staff member Carolyn Jaros retired in May, capping 30 years of service to Texas A&M and to three different deans in the College of Science. Biology also saw the retirements of three dedicated career staffers: Tonna Harris-Haller (associate director, Freshman Biology Program), Jillaine Maes (assistant head of the department), and Vickie Skrhak (business coordinator).

In 2012 as in years past, I thank each of you, not only for another year of great achievement, but also for the continued distinction you bring to both Texas A&M University and the College of Science in your efforts to deliver the highest quality of science education, scholarly research, and technical expertise and service to benefit the world.